ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi1 Unicode version

Theorem coi1 5181
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )

Proof of Theorem coi1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5164 . 2  |-  Rel  ( A  o.  _I  )
2 vex 2763 . . . . . 6  |-  x  e. 
_V
3 vex 2763 . . . . . 6  |-  y  e. 
_V
42, 3opelco 4834 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  E. z ( x  _I  z  /\  z A y ) )
5 vex 2763 . . . . . . . . . 10  |-  z  e. 
_V
65ideq 4814 . . . . . . . . 9  |-  ( x  _I  z  <->  x  =  z )
7 equcom 1717 . . . . . . . . 9  |-  ( x  =  z  <->  z  =  x )
86, 7bitri 184 . . . . . . . 8  |-  ( x  _I  z  <->  z  =  x )
98anbi1i 458 . . . . . . 7  |-  ( ( x  _I  z  /\  z A y )  <->  ( z  =  x  /\  z A y ) )
109exbii 1616 . . . . . 6  |-  ( E. z ( x  _I  z  /\  z A y )  <->  E. z
( z  =  x  /\  z A y ) )
11 breq1 4032 . . . . . . 7  |-  ( z  =  x  ->  (
z A y  <->  x A
y ) )
122, 11ceqsexv 2799 . . . . . 6  |-  ( E. z ( z  =  x  /\  z A y )  <->  x A
y )
1310, 12bitri 184 . . . . 5  |-  ( E. z ( x  _I  z  /\  z A y )  <->  x A
y )
144, 13bitri 184 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  x A y )
15 df-br 4030 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
1614, 15bitri 184 . . 3  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<-> 
<. x ,  y >.  e.  A )
1716eqrelriv 4752 . 2  |-  ( ( Rel  ( A  o.  _I  )  /\  Rel  A
)  ->  ( A  o.  _I  )  =  A )
181, 17mpan 424 1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   <.cop 3621   class class class wbr 4029    _I cid 4319    o. ccom 4663   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-co 4668
This theorem is referenced by:  coi2  5182  coires1  5183  relcoi1  5197  fcoi1  5434
  Copyright terms: Public domain W3C validator