ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi1 Unicode version

Theorem coi1 5119
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )

Proof of Theorem coi1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5102 . 2  |-  Rel  ( A  o.  _I  )
2 vex 2729 . . . . . 6  |-  x  e. 
_V
3 vex 2729 . . . . . 6  |-  y  e. 
_V
42, 3opelco 4776 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  E. z ( x  _I  z  /\  z A y ) )
5 vex 2729 . . . . . . . . . 10  |-  z  e. 
_V
65ideq 4756 . . . . . . . . 9  |-  ( x  _I  z  <->  x  =  z )
7 equcom 1694 . . . . . . . . 9  |-  ( x  =  z  <->  z  =  x )
86, 7bitri 183 . . . . . . . 8  |-  ( x  _I  z  <->  z  =  x )
98anbi1i 454 . . . . . . 7  |-  ( ( x  _I  z  /\  z A y )  <->  ( z  =  x  /\  z A y ) )
109exbii 1593 . . . . . 6  |-  ( E. z ( x  _I  z  /\  z A y )  <->  E. z
( z  =  x  /\  z A y ) )
11 breq1 3985 . . . . . . 7  |-  ( z  =  x  ->  (
z A y  <->  x A
y ) )
122, 11ceqsexv 2765 . . . . . 6  |-  ( E. z ( z  =  x  /\  z A y )  <->  x A
y )
1310, 12bitri 183 . . . . 5  |-  ( E. z ( x  _I  z  /\  z A y )  <->  x A
y )
144, 13bitri 183 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  x A y )
15 df-br 3983 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
1614, 15bitri 183 . . 3  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<-> 
<. x ,  y >.  e.  A )
1716eqrelriv 4697 . 2  |-  ( ( Rel  ( A  o.  _I  )  /\  Rel  A
)  ->  ( A  o.  _I  )  =  A )
181, 17mpan 421 1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579   class class class wbr 3982    _I cid 4266    o. ccom 4608   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-co 4613
This theorem is referenced by:  coi2  5120  coires1  5121  relcoi1  5135  fcoi1  5368
  Copyright terms: Public domain W3C validator