ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelriiv Unicode version

Theorem eqrelriiv 4758
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1  |-  Rel  A
eqreliiv.2  |-  Rel  B
eqreliiv.3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
Assertion
Ref Expression
eqrelriiv  |-  A  =  B
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2  |-  Rel  A
2 eqreliiv.2 . 2  |-  Rel  B
3 eqreliiv.3 . . 3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
43eqrelriv 4757 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
51, 2, 4mp2an 426 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   <.cop 3626   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670  df-rel 4671
This theorem is referenced by:  eqbrriv  4759  inopab  4799  difopab  4800  dfres2  4999  restidsing  5003  cnvopab  5072  cnv0  5074  cnvdif  5077  cnvcnvsn  5147  dfco2  5170  coiun  5180  co02  5184  coass  5189  ressn  5211
  Copyright terms: Public domain W3C validator