| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqrelriiv | Unicode version | ||
| Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.) |
| Ref | Expression |
|---|---|
| eqreliiv.1 |
|
| eqreliiv.2 |
|
| eqreliiv.3 |
|
| Ref | Expression |
|---|---|
| eqrelriiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreliiv.1 |
. 2
| |
| 2 | eqreliiv.2 |
. 2
| |
| 3 | eqreliiv.3 |
. . 3
| |
| 4 | 3 | eqrelriv 4757 |
. 2
|
| 5 | 1, 2, 4 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 df-rel 4671 |
| This theorem is referenced by: eqbrriv 4759 inopab 4799 difopab 4800 dfres2 4999 restidsing 5003 cnvopab 5072 cnv0 5074 cnvdif 5077 cnvcnvsn 5147 dfco2 5170 coiun 5180 co02 5184 coass 5189 ressn 5211 |
| Copyright terms: Public domain | W3C validator |