ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelriiv Unicode version

Theorem eqrelriiv 4633
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1  |-  Rel  A
eqreliiv.2  |-  Rel  B
eqreliiv.3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
Assertion
Ref Expression
eqrelriiv  |-  A  =  B
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2  |-  Rel  A
2 eqreliiv.2 . 2  |-  Rel  B
3 eqreliiv.3 . . 3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
43eqrelriv 4632 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
51, 2, 4mp2an 422 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1331    e. wcel 1480   <.cop 3530   Rel wrel 4544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545  df-rel 4546
This theorem is referenced by:  eqbrriv  4634  inopab  4671  difopab  4672  dfres2  4871  cnvopab  4940  cnv0  4942  cnvdif  4945  cnvcnvsn  5015  dfco2  5038  coiun  5048  co02  5052  coass  5057  ressn  5079
  Copyright terms: Public domain W3C validator