ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelriiv Unicode version

Theorem eqrelriiv 4813
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1  |-  Rel  A
eqreliiv.2  |-  Rel  B
eqreliiv.3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
Assertion
Ref Expression
eqrelriiv  |-  A  =  B
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2  |-  Rel  A
2 eqreliiv.2 . 2  |-  Rel  B
3 eqreliiv.3 . . 3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
43eqrelriv 4812 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
51, 2, 4mp2an 426 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   <.cop 3669   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-rel 4726
This theorem is referenced by:  eqbrriv  4814  inopab  4854  difopab  4855  dfres2  5057  restidsing  5061  cnvopab  5130  cnv0  5132  cnvdif  5135  cnvcnvsn  5205  dfco2  5228  coiun  5238  co02  5242  coass  5247  ressn  5269
  Copyright terms: Public domain W3C validator