ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom4 Unicode version

Theorem binom4 14400
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11492, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )

Proof of Theorem binom4
StepHypRef Expression
1 df-4 8980 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 5886 . . 3  |-  ( ( A  +  B ) ^ 4 )  =  ( ( A  +  B ) ^ (
3  +  1 ) )
3 addcl 7936 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 3nn0 9194 . . . 4  |-  3  e.  NN0
5 expp1 10527 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  3  e.  NN0 )  -> 
( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
63, 4, 5sylancl 413 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
72, 6eqtrid 2222 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
8 binom3 10638 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
98oveq1d 5890 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
3 )  x.  ( A  +  B )
)  =  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  ( A  +  B ) ) )
10 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
11 expcl 10538 . . . . . . 7  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
1210, 4, 11sylancl 413 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  e.  CC )
13 3cn 8994 . . . . . . 7  |-  3  e.  CC
1410sqcld 10652 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
15 simpr 110 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
1614, 15mulcld 7978 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
17 mulcl 7938 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
2 )  x.  B
) )  e.  CC )
1813, 16, 17sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  e.  CC )
1912, 18addcld 7977 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  e.  CC )
2015sqcld 10652 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2110, 20mulcld 7978 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  e.  CC )
22 mulcl 7938 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
2313, 21, 22sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
24 expcl 10538 . . . . . . 7  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
2515, 4, 24sylancl 413 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  e.  CC )
2623, 25addcld 7977 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  e.  CC )
2719, 26addcld 7977 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  e.  CC )
2827, 10, 15adddid 7982 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  A )  +  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B ) ) )
291oveq2i 5886 . . . . . . . . 9  |-  ( A ^ 4 )  =  ( A ^ (
3  +  1 ) )
30 expp1 10527 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3110, 4, 30sylancl 413 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3229, 31eqtr2id 2223 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  A
)  =  ( A ^ 4 ) )
3313a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  3  e.  CC )
3433, 16, 10mulassd 7981 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  A ) ) )
3514, 15, 10mul32d 8110 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( ( A ^ 2 )  x.  A )  x.  B ) )
36 df-3 8979 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
3736oveq2i 5886 . . . . . . . . . . . . 13  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
38 2nn0 9193 . . . . . . . . . . . . . 14  |-  2  e.  NN0
39 expp1 10527 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4010, 38, 39sylancl 413 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4137, 40eqtr2id 2223 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  A
)  =  ( A ^ 3 ) )
4241oveq1d 5890 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  A )  x.  B
)  =  ( ( A ^ 3 )  x.  B ) )
4335, 42eqtrd 2210 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( A ^ 3 )  x.  B ) )
4443oveq2d 5891 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  A ) )  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4534, 44eqtrd 2210 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4632, 45oveq12d 5893 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  A )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  A ) )  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
4712, 10, 18, 46joinlmuladdmuld 7985 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  A
)  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
4833, 21, 10mulassd 7981 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  A ) ) )
4910, 20, 10mul32d 8110 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5010sqvald 10651 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
5150oveq1d 5890 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5249, 51eqtr4d 2213 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )
5352oveq2d 5891 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  A ) )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5448, 53eqtrd 2210 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5525, 10mulcomd 7979 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  A
)  =  ( A  x.  ( B ^
3 ) ) )
5654, 55oveq12d 5893 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A
)  +  ( ( B ^ 3 )  x.  A ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
5723, 10, 25, 56joinlmuladdmuld 7985 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
5847, 57oveq12d 5893 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  A )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A ) )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
5919, 10, 26, 58joinlmuladdmuld 7985 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
6019, 26, 15adddird 7983 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) ) )
6133, 16, 15mulassd 7981 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  B ) ) )
6214, 15, 15mulassd 7981 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B  x.  B ) ) )
6315sqvald 10651 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
6463oveq2d 5891 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A ^ 2 )  x.  ( B  x.  B
) ) )
6562, 64eqtr4d 2213 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )
6665oveq2d 5891 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  B ) )  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
6761, 66eqtrd 2210 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
6867oveq2d 5891 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  B ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
6912, 15, 18, 68joinlmuladdmuld 7985 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  B
)  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
7033, 21, 15mulassd 7981 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  B ) ) )
7110, 20, 15mulassd 7981 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( ( B ^
2 )  x.  B
) ) )
7236oveq2i 5886 . . . . . . . . . . . . 13  |-  ( B ^ 3 )  =  ( B ^ (
2  +  1 ) )
73 expp1 10527 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
7415, 38, 73sylancl 413 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
7572, 74eqtr2id 2223 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
2 )  x.  B
)  =  ( B ^ 3 ) )
7675oveq2d 5891 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
( B ^ 2 )  x.  B ) )  =  ( A  x.  ( B ^
3 ) ) )
7771, 76eqtrd 2210 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( B ^ 3 ) ) )
7877oveq2d 5891 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  B ) )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
7970, 78eqtrd 2210 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
801oveq2i 5886 . . . . . . . . 9  |-  ( B ^ 4 )  =  ( B ^ (
3  +  1 ) )
81 expp1 10527 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8215, 4, 81sylancl 413 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8380, 82eqtr2id 2223 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  B
)  =  ( B ^ 4 ) )
8479, 83oveq12d 5893 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B
)  +  ( ( B ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
8523, 15, 25, 84joinlmuladdmuld 7985 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
8669, 85oveq12d 5893 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) )  =  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
8712, 15mulcld 7978 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  B
)  e.  CC )
8814, 20mulcld 7978 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )
89 mulcl 7938 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9013, 88, 89sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9110, 25mulcld 7978 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 3 ) )  e.  CC )
92 mulcl 7938 . . . . . . . 8  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 3 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
9313, 91, 92sylancr 414 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
94 4nn0 9195 . . . . . . . 8  |-  4  e.  NN0
95 expcl 10538 . . . . . . . 8  |-  ( ( B  e.  CC  /\  4  e.  NN0 )  -> 
( B ^ 4 )  e.  CC )
9615, 94, 95sylancl 413 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 4 )  e.  CC )
9793, 96addcld 7977 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  e.  CC )
9887, 90, 97addassd 7980 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
9960, 86, 983eqtrd 2214 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
10059, 99oveq12d 5893 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A
)  +  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  B ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )  +  ( ( ( A ^
3 )  x.  B
)  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
101 expcl 10538 . . . . . . 7  |-  ( ( A  e.  CC  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  CC )
10210, 94, 101sylancl 413 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 4 )  e.  CC )
103 mulcl 7938 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
3 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
3 )  x.  B
) )  e.  CC )
10413, 87, 103sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 3 )  x.  B ) )  e.  CC )
105102, 104addcld 7977 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  e.  CC )
10690, 91addcld 7977 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  e.  CC )
10790, 97addcld 7977 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  e.  CC )
108105, 106, 87, 107add4d 8126 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
109102, 104, 87addassd 7980 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
1101oveq1i 5885 . . . . . . . . 9  |-  ( 4  x.  ( ( A ^ 3 )  x.  B ) )  =  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )
111 ax-1cn 7904 . . . . . . . . . . 11  |-  1  e.  CC
112111a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
11333, 112, 87adddird 7983 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
114110, 113eqtrid 2222 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
11587mulid2d 7976 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( A ^ 3 )  x.  B ) )
116115oveq2d 5891 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
3 )  x.  B
) )  +  ( 1  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
117114, 116eqtrd 2210 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
118117oveq2d 5891 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
119109, 118eqtr4d 2213 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) ) )
12090, 91, 90, 97add4d 8126 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
121 3p3e6 9061 . . . . . . . . 9  |-  ( 3  +  3 )  =  6
122121oveq1i 5885 . . . . . . . 8  |-  ( ( 3  +  3 )  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )
12333, 33, 88adddird 7983 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  3 )  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
124122, 123eqtr3id 2224 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
125 3p1e4 9054 . . . . . . . . . . . . 13  |-  ( 3  +  1 )  =  4
12613, 111, 125addcomli 8102 . . . . . . . . . . . 12  |-  ( 1  +  3 )  =  4
127126oveq1i 5885 . . . . . . . . . . 11  |-  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( 4  x.  ( A  x.  ( B ^
3 ) ) )
128112, 33, 91adddird 7983 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
129127, 128eqtr3id 2224 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
13091mulid2d 7976 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( A  x.  ( B ^
3 ) ) )
131130oveq1d 5890 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
132129, 131eqtrd 2210 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
133132oveq1d 5890 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) ) )
13491, 93, 96addassd 7980 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  ( B ^
3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
135133, 134eqtrd 2210 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^
3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
136124, 135oveq12d 5893 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
137120, 136eqtr4d 2213 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) )
138119, 137oveq12d 5893 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
139108, 138eqtrd 2210 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
14028, 100, 1393eqtrd 2214 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
1417, 9, 1403eqtrd 2214 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148  (class class class)co 5875   CCcc 7809   1c1 7812    + caddc 7814    x. cmul 7816   2c2 8970   3c3 8971   4c4 8972   6c6 8974   NN0cn0 9176   ^cexp 10519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446  df-exp 10520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator