ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom4 Unicode version

Theorem binom4 15653
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11995, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )

Proof of Theorem binom4
StepHypRef Expression
1 df-4 9171 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 6012 . . 3  |-  ( ( A  +  B ) ^ 4 )  =  ( ( A  +  B ) ^ (
3  +  1 ) )
3 addcl 8124 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 3nn0 9387 . . . 4  |-  3  e.  NN0
5 expp1 10768 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  3  e.  NN0 )  -> 
( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
63, 4, 5sylancl 413 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
72, 6eqtrid 2274 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
8 binom3 10879 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
98oveq1d 6016 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
3 )  x.  ( A  +  B )
)  =  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  ( A  +  B ) ) )
10 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
11 expcl 10779 . . . . . . 7  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
1210, 4, 11sylancl 413 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  e.  CC )
13 3cn 9185 . . . . . . 7  |-  3  e.  CC
1410sqcld 10893 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
15 simpr 110 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
1614, 15mulcld 8167 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
17 mulcl 8126 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
2 )  x.  B
) )  e.  CC )
1813, 16, 17sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  e.  CC )
1912, 18addcld 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  e.  CC )
2015sqcld 10893 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2110, 20mulcld 8167 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  e.  CC )
22 mulcl 8126 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
2313, 21, 22sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
24 expcl 10779 . . . . . . 7  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
2515, 4, 24sylancl 413 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  e.  CC )
2623, 25addcld 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  e.  CC )
2719, 26addcld 8166 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  e.  CC )
2827, 10, 15adddid 8171 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  A )  +  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B ) ) )
291oveq2i 6012 . . . . . . . . 9  |-  ( A ^ 4 )  =  ( A ^ (
3  +  1 ) )
30 expp1 10768 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3110, 4, 30sylancl 413 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3229, 31eqtr2id 2275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  A
)  =  ( A ^ 4 ) )
3313a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  3  e.  CC )
3433, 16, 10mulassd 8170 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  A ) ) )
3514, 15, 10mul32d 8299 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( ( A ^ 2 )  x.  A )  x.  B ) )
36 df-3 9170 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
3736oveq2i 6012 . . . . . . . . . . . . 13  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
38 2nn0 9386 . . . . . . . . . . . . . 14  |-  2  e.  NN0
39 expp1 10768 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4010, 38, 39sylancl 413 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4137, 40eqtr2id 2275 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  A
)  =  ( A ^ 3 ) )
4241oveq1d 6016 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  A )  x.  B
)  =  ( ( A ^ 3 )  x.  B ) )
4335, 42eqtrd 2262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( A ^ 3 )  x.  B ) )
4443oveq2d 6017 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  A ) )  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4534, 44eqtrd 2262 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4632, 45oveq12d 6019 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  A )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  A ) )  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
4712, 10, 18, 46joinlmuladdmuld 8174 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  A
)  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
4833, 21, 10mulassd 8170 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  A ) ) )
4910, 20, 10mul32d 8299 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5010sqvald 10892 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
5150oveq1d 6016 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5249, 51eqtr4d 2265 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )
5352oveq2d 6017 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  A ) )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5448, 53eqtrd 2262 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5525, 10mulcomd 8168 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  A
)  =  ( A  x.  ( B ^
3 ) ) )
5654, 55oveq12d 6019 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A
)  +  ( ( B ^ 3 )  x.  A ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
5723, 10, 25, 56joinlmuladdmuld 8174 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
5847, 57oveq12d 6019 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  A )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A ) )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
5919, 10, 26, 58joinlmuladdmuld 8174 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
6019, 26, 15adddird 8172 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) ) )
6133, 16, 15mulassd 8170 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  B ) ) )
6214, 15, 15mulassd 8170 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B  x.  B ) ) )
6315sqvald 10892 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
6463oveq2d 6017 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A ^ 2 )  x.  ( B  x.  B
) ) )
6562, 64eqtr4d 2265 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )
6665oveq2d 6017 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  B ) )  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
6761, 66eqtrd 2262 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
6867oveq2d 6017 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  B ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
6912, 15, 18, 68joinlmuladdmuld 8174 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  B
)  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
7033, 21, 15mulassd 8170 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  B ) ) )
7110, 20, 15mulassd 8170 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( ( B ^
2 )  x.  B
) ) )
7236oveq2i 6012 . . . . . . . . . . . . 13  |-  ( B ^ 3 )  =  ( B ^ (
2  +  1 ) )
73 expp1 10768 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
7415, 38, 73sylancl 413 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
7572, 74eqtr2id 2275 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
2 )  x.  B
)  =  ( B ^ 3 ) )
7675oveq2d 6017 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
( B ^ 2 )  x.  B ) )  =  ( A  x.  ( B ^
3 ) ) )
7771, 76eqtrd 2262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( B ^ 3 ) ) )
7877oveq2d 6017 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  B ) )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
7970, 78eqtrd 2262 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
801oveq2i 6012 . . . . . . . . 9  |-  ( B ^ 4 )  =  ( B ^ (
3  +  1 ) )
81 expp1 10768 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8215, 4, 81sylancl 413 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8380, 82eqtr2id 2275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  B
)  =  ( B ^ 4 ) )
8479, 83oveq12d 6019 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B
)  +  ( ( B ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
8523, 15, 25, 84joinlmuladdmuld 8174 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
8669, 85oveq12d 6019 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) )  =  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
8712, 15mulcld 8167 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  B
)  e.  CC )
8814, 20mulcld 8167 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )
89 mulcl 8126 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9013, 88, 89sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9110, 25mulcld 8167 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 3 ) )  e.  CC )
92 mulcl 8126 . . . . . . . 8  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 3 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
9313, 91, 92sylancr 414 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
94 4nn0 9388 . . . . . . . 8  |-  4  e.  NN0
95 expcl 10779 . . . . . . . 8  |-  ( ( B  e.  CC  /\  4  e.  NN0 )  -> 
( B ^ 4 )  e.  CC )
9615, 94, 95sylancl 413 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 4 )  e.  CC )
9793, 96addcld 8166 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  e.  CC )
9887, 90, 97addassd 8169 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
9960, 86, 983eqtrd 2266 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
10059, 99oveq12d 6019 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A
)  +  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  B ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )  +  ( ( ( A ^
3 )  x.  B
)  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
101 expcl 10779 . . . . . . 7  |-  ( ( A  e.  CC  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  CC )
10210, 94, 101sylancl 413 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 4 )  e.  CC )
103 mulcl 8126 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
3 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
3 )  x.  B
) )  e.  CC )
10413, 87, 103sylancr 414 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 3 )  x.  B ) )  e.  CC )
105102, 104addcld 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  e.  CC )
10690, 91addcld 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  e.  CC )
10790, 97addcld 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  e.  CC )
108105, 106, 87, 107add4d 8315 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
109102, 104, 87addassd 8169 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
1101oveq1i 6011 . . . . . . . . 9  |-  ( 4  x.  ( ( A ^ 3 )  x.  B ) )  =  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )
111 ax-1cn 8092 . . . . . . . . . . 11  |-  1  e.  CC
112111a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
11333, 112, 87adddird 8172 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
114110, 113eqtrid 2274 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
11587mulid2d 8165 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( A ^ 3 )  x.  B ) )
116115oveq2d 6017 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
3 )  x.  B
) )  +  ( 1  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
117114, 116eqtrd 2262 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
118117oveq2d 6017 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
119109, 118eqtr4d 2265 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) ) )
12090, 91, 90, 97add4d 8315 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
121 3p3e6 9253 . . . . . . . . 9  |-  ( 3  +  3 )  =  6
122121oveq1i 6011 . . . . . . . 8  |-  ( ( 3  +  3 )  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )
12333, 33, 88adddird 8172 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  3 )  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
124122, 123eqtr3id 2276 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
125 3p1e4 9246 . . . . . . . . . . . . 13  |-  ( 3  +  1 )  =  4
12613, 111, 125addcomli 8291 . . . . . . . . . . . 12  |-  ( 1  +  3 )  =  4
127126oveq1i 6011 . . . . . . . . . . 11  |-  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( 4  x.  ( A  x.  ( B ^
3 ) ) )
128112, 33, 91adddird 8172 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
129127, 128eqtr3id 2276 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
13091mulid2d 8165 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( A  x.  ( B ^
3 ) ) )
131130oveq1d 6016 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
132129, 131eqtrd 2262 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
133132oveq1d 6016 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) ) )
13491, 93, 96addassd 8169 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  ( B ^
3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
135133, 134eqtrd 2262 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^
3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
136124, 135oveq12d 6019 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
137120, 136eqtr4d 2265 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) )
138119, 137oveq12d 6019 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
139108, 138eqtrd 2262 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
14028, 100, 1393eqtrd 2266 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
1417, 9, 1403eqtrd 2266 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004   2c2 9161   3c3 9162   4c4 9163   6c6 9165   NN0cn0 9369   ^cexp 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-exp 10761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator