ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom4 Unicode version

Theorem binom4 13267
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11374, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )

Proof of Theorem binom4
StepHypRef Expression
1 df-4 8888 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 5832 . . 3  |-  ( ( A  +  B ) ^ 4 )  =  ( ( A  +  B ) ^ (
3  +  1 ) )
3 addcl 7851 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 3nn0 9102 . . . 4  |-  3  e.  NN0
5 expp1 10419 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  3  e.  NN0 )  -> 
( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
63, 4, 5sylancl 410 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ (
3  +  1 ) )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
72, 6syl5eq 2202 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A  +  B
) ^ 3 )  x.  ( A  +  B ) ) )
8 binom3 10528 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
98oveq1d 5836 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
3 )  x.  ( A  +  B )
)  =  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  ( A  +  B ) ) )
10 simpl 108 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
11 expcl 10430 . . . . . . 7  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
1210, 4, 11sylancl 410 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  e.  CC )
13 3cn 8902 . . . . . . 7  |-  3  e.  CC
1410sqcld 10542 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
15 simpr 109 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
1614, 15mulcld 7892 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
17 mulcl 7853 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
2 )  x.  B
) )  e.  CC )
1813, 16, 17sylancr 411 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  e.  CC )
1912, 18addcld 7891 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  e.  CC )
2015sqcld 10542 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2110, 20mulcld 7892 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  e.  CC )
22 mulcl 7853 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
2313, 21, 22sylancr 411 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
24 expcl 10430 . . . . . . 7  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
2515, 4, 24sylancl 410 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  e.  CC )
2623, 25addcld 7891 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  e.  CC )
2719, 26addcld 7891 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  e.  CC )
2827, 10, 15adddid 7896 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  A )  +  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B ) ) )
291oveq2i 5832 . . . . . . . . 9  |-  ( A ^ 4 )  =  ( A ^ (
3  +  1 ) )
30 expp1 10419 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3110, 4, 30sylancl 410 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
3  +  1 ) )  =  ( ( A ^ 3 )  x.  A ) )
3229, 31syl5req 2203 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  A
)  =  ( A ^ 4 ) )
3313a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  3  e.  CC )
3433, 16, 10mulassd 7895 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  A ) ) )
3514, 15, 10mul32d 8022 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( ( A ^ 2 )  x.  A )  x.  B ) )
36 df-3 8887 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
3736oveq2i 5832 . . . . . . . . . . . . 13  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
38 2nn0 9101 . . . . . . . . . . . . . 14  |-  2  e.  NN0
39 expp1 10419 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4010, 38, 39sylancl 410 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
4137, 40syl5req 2203 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  A
)  =  ( A ^ 3 ) )
4241oveq1d 5836 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  A )  x.  B
)  =  ( ( A ^ 3 )  x.  B ) )
4335, 42eqtrd 2190 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  A
)  =  ( ( A ^ 3 )  x.  B ) )
4443oveq2d 5837 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  A ) )  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4534, 44eqtrd 2190 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  A
)  =  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )
4632, 45oveq12d 5839 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  A )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  A ) )  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
4712, 10, 18, 46joinlmuladdmuld 7899 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  A
)  =  ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) ) )
4833, 21, 10mulassd 7895 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  A ) ) )
4910, 20, 10mul32d 8022 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5010sqvald 10541 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
5150oveq1d 5836 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A  x.  A )  x.  ( B ^ 2 ) ) )
5249, 51eqtr4d 2193 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  A )  =  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )
5352oveq2d 5837 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  A ) )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5448, 53eqtrd 2190 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A )  =  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )
5525, 10mulcomd 7893 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  A
)  =  ( A  x.  ( B ^
3 ) ) )
5654, 55oveq12d 5839 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  A
)  +  ( ( B ^ 3 )  x.  A ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
5723, 10, 25, 56joinlmuladdmuld 7899 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )
5847, 57oveq12d 5839 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  A )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  A ) )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
5919, 10, 26, 58joinlmuladdmuld 7899 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A )  =  ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) ) )
6019, 26, 15adddird 7897 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) ) )
6133, 16, 15mulassd 7895 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( ( A ^ 2 )  x.  B )  x.  B ) ) )
6214, 15, 15mulassd 7895 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B  x.  B ) ) )
6315sqvald 10541 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
6463oveq2d 5837 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  =  ( ( A ^ 2 )  x.  ( B  x.  B
) ) )
6562, 64eqtr4d 2193 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  x.  B
)  =  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )
6665oveq2d 5837 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( ( A ^
2 )  x.  B
)  x.  B ) )  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
6761, 66eqtrd 2190 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  B
) )  x.  B
)  =  ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) ) )
6867oveq2d 5837 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  (
( A ^ 2 )  x.  B ) )  x.  B ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
6912, 15, 18, 68joinlmuladdmuld 7899 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  x.  B
)  =  ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
7033, 21, 15mulassd 7895 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( ( A  x.  ( B ^ 2 ) )  x.  B ) ) )
7110, 20, 15mulassd 7895 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( ( B ^
2 )  x.  B
) ) )
7236oveq2i 5832 . . . . . . . . . . . . 13  |-  ( B ^ 3 )  =  ( B ^ (
2  +  1 ) )
73 expp1 10419 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
7415, 38, 73sylancl 410 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
7572, 74syl5req 2203 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
2 )  x.  B
)  =  ( B ^ 3 ) )
7675oveq2d 5837 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
( B ^ 2 )  x.  B ) )  =  ( A  x.  ( B ^
3 ) ) )
7771, 76eqtrd 2190 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  x.  B )  =  ( A  x.  ( B ^ 3 ) ) )
7877oveq2d 5837 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A  x.  ( B ^ 2 ) )  x.  B ) )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
7970, 78eqtrd 2190 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B )  =  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )
801oveq2i 5832 . . . . . . . . 9  |-  ( B ^ 4 )  =  ( B ^ (
3  +  1 ) )
81 expp1 10419 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8215, 4, 81sylancl 410 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
3  +  1 ) )  =  ( ( B ^ 3 )  x.  B ) )
8380, 82syl5req 2203 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
3 )  x.  B
)  =  ( B ^ 4 ) )
8479, 83oveq12d 5839 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  x.  B
)  +  ( ( B ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
8523, 15, 25, 84joinlmuladdmuld 7899 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B )  =  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )
8669, 85oveq12d 5839 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  x.  B )  +  ( ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  x.  B ) )  =  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
8712, 15mulcld 7892 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  x.  B
)  e.  CC )
8814, 20mulcld 7892 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )
89 mulcl 7853 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
2 )  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9013, 88, 89sylancr 411 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  e.  CC )
9110, 25mulcld 7892 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 3 ) )  e.  CC )
92 mulcl 7853 . . . . . . . 8  |-  ( ( 3  e.  CC  /\  ( A  x.  ( B ^ 3 ) )  e.  CC )  -> 
( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
9313, 91, 92sylancr 411 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  e.  CC )
94 4nn0 9103 . . . . . . . 8  |-  4  e.  NN0
95 expcl 10430 . . . . . . . 8  |-  ( ( B  e.  CC  /\  4  e.  NN0 )  -> 
( B ^ 4 )  e.  CC )
9615, 94, 95sylancl 410 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 4 )  e.  CC )
9793, 96addcld 7891 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  e.  CC )
9887, 90, 97addassd 7894 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  x.  B )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
9960, 86, 983eqtrd 2194 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  B )  =  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
10059, 99oveq12d 5839 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  A
)  +  ( ( ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  x.  B ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) ) )  +  ( ( ( A ^
3 )  x.  B
)  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
101 expcl 10430 . . . . . . 7  |-  ( ( A  e.  CC  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  CC )
10210, 94, 101sylancl 410 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 4 )  e.  CC )
103 mulcl 7853 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( ( A ^
3 )  x.  B
)  e.  CC )  ->  ( 3  x.  ( ( A ^
3 )  x.  B
) )  e.  CC )
10413, 87, 103sylancr 411 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 3 )  x.  B ) )  e.  CC )
105102, 104addcld 7891 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 3  x.  ( ( A ^ 3 )  x.  B ) ) )  e.  CC )
10690, 91addcld 7891 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  e.  CC )
10790, 97addcld 7891 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  e.  CC )
108105, 106, 87, 107add4d 8038 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) ) )
109102, 104, 87addassd 7894 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
1101oveq1i 5831 . . . . . . . . 9  |-  ( 4  x.  ( ( A ^ 3 )  x.  B ) )  =  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )
111 ax-1cn 7819 . . . . . . . . . . 11  |-  1  e.  CC
112111a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
11333, 112, 87adddird 7897 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  1 )  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
114110, 113syl5eq 2202 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( 1  x.  ( ( A ^
3 )  x.  B
) ) ) )
11587mulid2d 7890 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( A ^ 3 )  x.  B ) )
116115oveq2d 5837 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( ( A ^
3 )  x.  B
) )  +  ( 1  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
117114, 116eqtrd 2190 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  (
( A ^ 3 )  x.  B ) )  =  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^ 3 )  x.  B ) ) )
118117oveq2d 5837 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  =  ( ( A ^ 4 )  +  ( ( 3  x.  ( ( A ^ 3 )  x.  B ) )  +  ( ( A ^
3 )  x.  B
) ) ) )
119109, 118eqtr4d 2193 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 4 )  +  ( 3  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( A ^ 3 )  x.  B ) )  =  ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) ) )
12090, 91, 90, 97add4d 8038 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( 3  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
121 3p3e6 8969 . . . . . . . . 9  |-  ( 3  +  3 )  =  6
122121oveq1i 5831 . . . . . . . 8  |-  ( ( 3  +  3 )  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )
12333, 33, 88adddird 7897 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  +  3 )  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
124122, 123eqtr3id 2204 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  =  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) ) )
125 3p1e4 8962 . . . . . . . . . . . . 13  |-  ( 3  +  1 )  =  4
12613, 111, 125addcomli 8014 . . . . . . . . . . . 12  |-  ( 1  +  3 )  =  4
127126oveq1i 5831 . . . . . . . . . . 11  |-  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( 4  x.  ( A  x.  ( B ^
3 ) ) )
128112, 33, 91adddird 7897 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  3 )  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
129127, 128eqtr3id 2204 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
13091mulid2d 7890 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( A  x.  ( B ^
3 ) ) )
131130oveq1d 5836 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
132129, 131eqtrd 2190 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) ) )
133132oveq1d 5836 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( ( A  x.  ( B ^ 3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) ) )
13491, 93, 96addassd 7894 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  ( B ^
3 ) )  +  ( 3  x.  ( A  x.  ( B ^ 3 ) ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
135133, 134eqtrd 2190 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) )  =  ( ( A  x.  ( B ^
3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )
136124, 135oveq12d 5839 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) )  =  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) ) )  +  ( ( A  x.  ( B ^ 3 ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
137120, 136eqtr4d 2193 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^ 3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^
2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) )  =  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) )
138119, 137oveq12d 5839 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( A ^
3 )  x.  B
) )  +  ( ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
139108, 138eqtrd 2190 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 4 )  +  ( 3  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 3  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( A  x.  ( B ^
3 ) ) ) )  +  ( ( ( A ^ 3 )  x.  B )  +  ( ( 3  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  (
( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  (
( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
14028, 100, 1393eqtrd 2194 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )  x.  ( A  +  B ) )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^
3 )  x.  B
) ) )  +  ( ( 6  x.  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^
3 ) ) )  +  ( B ^
4 ) ) ) ) )
1417, 9, 1403eqtrd 2194 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 4 )  =  ( ( ( A ^ 4 )  +  ( 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^ 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128  (class class class)co 5821   CCcc 7724   1c1 7727    + caddc 7729    x. cmul 7731   2c2 8878   3c3 8879   4c4 8880   6c6 8882   NN0cn0 9084   ^cexp 10411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-5 8889  df-6 8890  df-n0 9085  df-z 9162  df-uz 9434  df-seqfrec 10338  df-exp 10412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator