ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 Unicode version

Theorem recextlem1 8695
Description: Lemma for recexap 8697. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  +  ( B  x.  B
) ) )

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 ax-icn 7991 . . . . 5  |-  _i  e.  CC
3 mulcl 8023 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
42, 3mpan 424 . . . 4  |-  ( B  e.  CC  ->  (
_i  x.  B )  e.  CC )
54adantl 277 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
6 subcl 8242 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  -  ( _i  x.  B
) )  e.  CC )
74, 6sylan2 286 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  (
_i  x.  B )
)  e.  CC )
81, 5, 7adddird 8069 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  ( A  -  ( _i  x.  B
) ) )  +  ( ( _i  x.  B )  x.  ( A  -  ( _i  x.  B ) ) ) ) )
91, 1, 5subdid 8457 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  -  ( A  x.  (
_i  x.  B )
) ) )
105, 1, 5subdid 8457 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  B )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( ( _i  x.  B )  x.  A )  -  ( ( _i  x.  B )  x.  (
_i  x.  B )
) ) )
11 mulcom 8025 . . . . . 6  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  x.  ( _i  x.  B
) )  =  ( ( _i  x.  B
)  x.  A ) )
124, 11sylan2 286 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
_i  x.  B )
)  =  ( ( _i  x.  B )  x.  A ) )
13 ixi 8627 . . . . . . . . . 10  |-  ( _i  x.  _i )  = 
-u 1
1413oveq1i 5935 . . . . . . . . 9  |-  ( ( _i  x.  _i )  x.  ( B  x.  B ) )  =  ( -u 1  x.  ( B  x.  B
) )
15 mulcl 8023 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  B  e.  CC )  ->  ( B  x.  B
)  e.  CC )
1615mulm1d 8453 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( B  x.  B
) )  =  -u ( B  x.  B
) )
1714, 16eqtr2id 2242 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  =  ( ( _i  x.  _i )  x.  ( B  x.  B ) ) )
18 mul4 8175 . . . . . . . . 9  |-  ( ( ( _i  e.  CC  /\  _i  e.  CC )  /\  ( B  e.  CC  /\  B  e.  CC ) )  -> 
( ( _i  x.  _i )  x.  ( B  x.  B )
)  =  ( ( _i  x.  B )  x.  ( _i  x.  B ) ) )
192, 2, 18mpanl12 436 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  ( B  x.  B )
)  =  ( ( _i  x.  B )  x.  ( _i  x.  B ) ) )
2017, 19eqtrd 2229 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  =  ( ( _i  x.  B
)  x.  ( _i  x.  B ) ) )
2120anidms 397 . . . . . 6  |-  ( B  e.  CC  ->  -u ( B  x.  B )  =  ( ( _i  x.  B )  x.  ( _i  x.  B
) ) )
2221adantl 277 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  =  ( ( _i  x.  B
)  x.  ( _i  x.  B ) ) )
2312, 22oveq12d 5943 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( _i  x.  B
) )  -  -u ( B  x.  B )
)  =  ( ( ( _i  x.  B
)  x.  A )  -  ( ( _i  x.  B )  x.  ( _i  x.  B
) ) ) )
2410, 23eqtr4d 2232 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  B )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  ( _i  x.  B ) )  -  -u ( B  x.  B
) ) )
259, 24oveq12d 5943 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( A  -  (
_i  x.  B )
) )  +  ( ( _i  x.  B
)  x.  ( A  -  ( _i  x.  B ) ) ) )  =  ( ( ( A  x.  A
)  -  ( A  x.  ( _i  x.  B ) ) )  +  ( ( A  x.  ( _i  x.  B ) )  -  -u ( B  x.  B
) ) ) )
26 mulcl 8023 . . . . . 6  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( A  x.  A
)  e.  CC )
2726anidms 397 . . . . 5  |-  ( A  e.  CC  ->  ( A  x.  A )  e.  CC )
2827adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  A
)  e.  CC )
29 mulcl 8023 . . . . 5  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  x.  ( _i  x.  B
) )  e.  CC )
304, 29sylan2 286 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  (
_i  x.  B )
)  e.  CC )
3115negcld 8341 . . . . . 6  |-  ( ( B  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  e.  CC )
3231anidms 397 . . . . 5  |-  ( B  e.  CC  ->  -u ( B  x.  B )  e.  CC )
3332adantl 277 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( B  x.  B )  e.  CC )
3428, 30, 33npncand 8378 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  -  ( A  x.  (
_i  x.  B )
) )  +  ( ( A  x.  (
_i  x.  B )
)  -  -u ( B  x.  B )
) )  =  ( ( A  x.  A
)  -  -u ( B  x.  B )
) )
3515anidms 397 . . . 4  |-  ( B  e.  CC  ->  ( B  x.  B )  e.  CC )
36 subneg 8292 . . . 4  |-  ( ( ( A  x.  A
)  e.  CC  /\  ( B  x.  B
)  e.  CC )  ->  ( ( A  x.  A )  -  -u ( B  x.  B
) )  =  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3727, 35, 36syl2an 289 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  -  -u ( B  x.  B )
)  =  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3834, 37eqtrd 2229 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  -  ( A  x.  (
_i  x.  B )
) )  +  ( ( A  x.  (
_i  x.  B )
)  -  -u ( B  x.  B )
) )  =  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
398, 25, 383eqtrd 2233 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  +  ( B  x.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   1c1 7897   _ici 7898    + caddc 7899    x. cmul 7901    - cmin 8214   -ucneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by:  recexap  8697
  Copyright terms: Public domain W3C validator