Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidn0m | Unicode version |
Description: Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.) |
Ref | Expression |
---|---|
exmidn0m | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 EXMID | |
2 | 1 | olcd 724 | . . . 4 EXMID |
3 | notm0 3429 | . . . . . . 7 | |
4 | 3 | biimpi 119 | . . . . . 6 |
5 | 4 | adantl 275 | . . . . 5 EXMID |
6 | 5 | orcd 723 | . . . 4 EXMID |
7 | exmidexmid 4175 | . . . . 5 EXMID DECID | |
8 | exmiddc 826 | . . . . 5 DECID | |
9 | 7, 8 | syl 14 | . . . 4 EXMID |
10 | 2, 6, 9 | mpjaodan 788 | . . 3 EXMID |
11 | 10 | alrimiv 1862 | . 2 EXMID |
12 | orc 702 | . . . . . 6 | |
13 | 12 | a1d 22 | . . . . 5 |
14 | sssnm 3734 | . . . . . . . 8 | |
15 | 14 | biimpa 294 | . . . . . . 7 |
16 | 15 | olcd 724 | . . . . . 6 |
17 | 16 | ex 114 | . . . . 5 |
18 | 13, 17 | jaoi 706 | . . . 4 |
19 | 18 | alimi 1443 | . . 3 |
20 | exmid01 4177 | . . 3 EXMID | |
21 | 19, 20 | sylibr 133 | . 2 EXMID |
22 | 11, 21 | impbii 125 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wal 1341 wceq 1343 wex 1480 wss 3116 c0 3409 csn 3576 EXMIDwem 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-exmid 4174 |
This theorem is referenced by: exmidsssn 4181 |
Copyright terms: Public domain | W3C validator |