| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidn0m | Unicode version | ||
| Description: Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| exmidn0m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | 1 | olcd 736 |
. . . 4
|
| 3 | notm0 3489 |
. . . . . . 7
| |
| 4 | 3 | biimpi 120 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 5 | orcd 735 |
. . . 4
|
| 7 | exmidexmid 4256 |
. . . . 5
| |
| 8 | exmiddc 838 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 2, 6, 9 | mpjaodan 800 |
. . 3
|
| 11 | 10 | alrimiv 1898 |
. 2
|
| 12 | orc 714 |
. . . . . 6
| |
| 13 | 12 | a1d 22 |
. . . . 5
|
| 14 | sssnm 3808 |
. . . . . . . 8
| |
| 15 | 14 | biimpa 296 |
. . . . . . 7
|
| 16 | 15 | olcd 736 |
. . . . . 6
|
| 17 | 16 | ex 115 |
. . . . 5
|
| 18 | 13, 17 | jaoi 718 |
. . . 4
|
| 19 | 18 | alimi 1479 |
. . 3
|
| 20 | exmid01 4258 |
. . 3
| |
| 21 | 19, 20 | sylibr 134 |
. 2
|
| 22 | 11, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-exmid 4255 |
| This theorem is referenced by: exmidsssn 4262 |
| Copyright terms: Public domain | W3C validator |