ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidn0m Unicode version

Theorem exmidn0m 4132
Description: Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidn0m  |-  (EXMID  <->  A. x
( x  =  (/)  \/ 
E. y  y  e.  x ) )
Distinct variable group:    x, y

Proof of Theorem exmidn0m
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( (EXMID  /\ 
E. y  y  e.  x )  ->  E. y 
y  e.  x )
21olcd 724 . . . 4  |-  ( (EXMID  /\ 
E. y  y  e.  x )  ->  (
x  =  (/)  \/  E. y  y  e.  x
) )
3 notm0 3388 . . . . . . 7  |-  ( -. 
E. y  y  e.  x  <->  x  =  (/) )
43biimpi 119 . . . . . 6  |-  ( -. 
E. y  y  e.  x  ->  x  =  (/) )
54adantl 275 . . . . 5  |-  ( (EXMID  /\ 
-.  E. y  y  e.  x )  ->  x  =  (/) )
65orcd 723 . . . 4  |-  ( (EXMID  /\ 
-.  E. y  y  e.  x )  ->  (
x  =  (/)  \/  E. y  y  e.  x
) )
7 exmidexmid 4128 . . . . 5  |-  (EXMID  -> DECID  E. y  y  e.  x )
8 exmiddc 822 . . . . 5  |-  (DECID  E. y 
y  e.  x  -> 
( E. y  y  e.  x  \/  -.  E. y  y  e.  x
) )
97, 8syl 14 . . . 4  |-  (EXMID  ->  ( E. y  y  e.  x  \/  -.  E. y 
y  e.  x ) )
102, 6, 9mpjaodan 788 . . 3  |-  (EXMID  ->  (
x  =  (/)  \/  E. y  y  e.  x
) )
1110alrimiv 1847 . 2  |-  (EXMID  ->  A. x
( x  =  (/)  \/ 
E. y  y  e.  x ) )
12 orc 702 . . . . . 6  |-  ( x  =  (/)  ->  ( x  =  (/)  \/  x  =  { (/) } ) )
1312a1d 22 . . . . 5  |-  ( x  =  (/)  ->  ( x 
C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
14 sssnm 3689 . . . . . . . 8  |-  ( E. y  y  e.  x  ->  ( x  C_  { (/) }  <-> 
x  =  { (/) } ) )
1514biimpa 294 . . . . . . 7  |-  ( ( E. y  y  e.  x  /\  x  C_  {
(/) } )  ->  x  =  { (/) } )
1615olcd 724 . . . . . 6  |-  ( ( E. y  y  e.  x  /\  x  C_  {
(/) } )  ->  (
x  =  (/)  \/  x  =  { (/) } ) )
1716ex 114 . . . . 5  |-  ( E. y  y  e.  x  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
1813, 17jaoi 706 . . . 4  |-  ( ( x  =  (/)  \/  E. y  y  e.  x
)  ->  ( x  C_ 
{ (/) }  ->  (
x  =  (/)  \/  x  =  { (/) } ) ) )
1918alimi 1432 . . 3  |-  ( A. x ( x  =  (/)  \/  E. y  y  e.  x )  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
20 exmid01 4129 . . 3  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2119, 20sylibr 133 . 2  |-  ( A. x ( x  =  (/)  \/  E. y  y  e.  x )  -> EXMID )
2211, 21impbii 125 1  |-  (EXMID  <->  A. x
( x  =  (/)  \/ 
E. y  y  e.  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820   A.wal 1330    = wceq 1332   E.wex 1469    C_ wss 3076   (/)c0 3368   {csn 3532  EXMIDwem 4126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rab 2426  df-v 2691  df-dif 3078  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-exmid 4127
This theorem is referenced by:  exmidsssn  4133
  Copyright terms: Public domain W3C validator