| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidn0m | Unicode version | ||
| Description: Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| exmidn0m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | 1 | olcd 735 |
. . . 4
|
| 3 | notm0 3471 |
. . . . . . 7
| |
| 4 | 3 | biimpi 120 |
. . . . . 6
|
| 5 | 4 | adantl 277 |
. . . . 5
|
| 6 | 5 | orcd 734 |
. . . 4
|
| 7 | exmidexmid 4229 |
. . . . 5
| |
| 8 | exmiddc 837 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 2, 6, 9 | mpjaodan 799 |
. . 3
|
| 11 | 10 | alrimiv 1888 |
. 2
|
| 12 | orc 713 |
. . . . . 6
| |
| 13 | 12 | a1d 22 |
. . . . 5
|
| 14 | sssnm 3784 |
. . . . . . . 8
| |
| 15 | 14 | biimpa 296 |
. . . . . . 7
|
| 16 | 15 | olcd 735 |
. . . . . 6
|
| 17 | 16 | ex 115 |
. . . . 5
|
| 18 | 13, 17 | jaoi 717 |
. . . 4
|
| 19 | 18 | alimi 1469 |
. . 3
|
| 20 | exmid01 4231 |
. . 3
| |
| 21 | 19, 20 | sylibr 134 |
. 2
|
| 22 | 11, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-exmid 4228 |
| This theorem is referenced by: exmidsssn 4235 |
| Copyright terms: Public domain | W3C validator |