Proof of Theorem exmidn0m
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . 5
⊢
((EXMID ∧ ∃𝑦 𝑦 ∈ 𝑥) → ∃𝑦 𝑦 ∈ 𝑥) |
| 2 | 1 | olcd 735 |
. . . 4
⊢
((EXMID ∧ ∃𝑦 𝑦 ∈ 𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) |
| 3 | | notm0 3471 |
. . . . . . 7
⊢ (¬
∃𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅) |
| 4 | 3 | biimpi 120 |
. . . . . 6
⊢ (¬
∃𝑦 𝑦 ∈ 𝑥 → 𝑥 = ∅) |
| 5 | 4 | adantl 277 |
. . . . 5
⊢
((EXMID ∧ ¬ ∃𝑦 𝑦 ∈ 𝑥) → 𝑥 = ∅) |
| 6 | 5 | orcd 734 |
. . . 4
⊢
((EXMID ∧ ¬ ∃𝑦 𝑦 ∈ 𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) |
| 7 | | exmidexmid 4229 |
. . . . 5
⊢
(EXMID → DECID ∃𝑦 𝑦 ∈ 𝑥) |
| 8 | | exmiddc 837 |
. . . . 5
⊢
(DECID ∃𝑦 𝑦 ∈ 𝑥 → (∃𝑦 𝑦 ∈ 𝑥 ∨ ¬ ∃𝑦 𝑦 ∈ 𝑥)) |
| 9 | 7, 8 | syl 14 |
. . . 4
⊢
(EXMID → (∃𝑦 𝑦 ∈ 𝑥 ∨ ¬ ∃𝑦 𝑦 ∈ 𝑥)) |
| 10 | 2, 6, 9 | mpjaodan 799 |
. . 3
⊢
(EXMID → (𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) |
| 11 | 10 | alrimiv 1888 |
. 2
⊢
(EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) |
| 12 | | orc 713 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 13 | 12 | a1d 22 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 14 | | sssnm 3784 |
. . . . . . . 8
⊢
(∃𝑦 𝑦 ∈ 𝑥 → (𝑥 ⊆ {∅} ↔ 𝑥 = {∅})) |
| 15 | 14 | biimpa 296 |
. . . . . . 7
⊢
((∃𝑦 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ {∅}) → 𝑥 = {∅}) |
| 16 | 15 | olcd 735 |
. . . . . 6
⊢
((∃𝑦 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 17 | 16 | ex 115 |
. . . . 5
⊢
(∃𝑦 𝑦 ∈ 𝑥 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 18 | 13, 17 | jaoi 717 |
. . . 4
⊢ ((𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 19 | 18 | alimi 1469 |
. . 3
⊢
(∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 20 | | exmid01 4231 |
. . 3
⊢
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 21 | 19, 20 | sylibr 134 |
. 2
⊢
(∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥) →
EXMID) |
| 22 | 11, 21 | impbii 126 |
1
⊢
(EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦 ∈ 𝑥)) |