ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidn0m GIF version

Theorem exmidn0m 4132
Description: Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidn0m (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidn0m
StepHypRef Expression
1 simpr 109 . . . . 5 ((EXMID ∧ ∃𝑦 𝑦𝑥) → ∃𝑦 𝑦𝑥)
21olcd 724 . . . 4 ((EXMID ∧ ∃𝑦 𝑦𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
3 notm0 3388 . . . . . . 7 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
43biimpi 119 . . . . . 6 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
54adantl 275 . . . . 5 ((EXMID ∧ ¬ ∃𝑦 𝑦𝑥) → 𝑥 = ∅)
65orcd 723 . . . 4 ((EXMID ∧ ¬ ∃𝑦 𝑦𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
7 exmidexmid 4128 . . . . 5 (EXMIDDECID𝑦 𝑦𝑥)
8 exmiddc 822 . . . . 5 (DECID𝑦 𝑦𝑥 → (∃𝑦 𝑦𝑥 ∨ ¬ ∃𝑦 𝑦𝑥))
97, 8syl 14 . . . 4 (EXMID → (∃𝑦 𝑦𝑥 ∨ ¬ ∃𝑦 𝑦𝑥))
102, 6, 9mpjaodan 788 . . 3 (EXMID → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
1110alrimiv 1847 . 2 (EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
12 orc 702 . . . . . 6 (𝑥 = ∅ → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1312a1d 22 . . . . 5 (𝑥 = ∅ → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
14 sssnm 3689 . . . . . . . 8 (∃𝑦 𝑦𝑥 → (𝑥 ⊆ {∅} ↔ 𝑥 = {∅}))
1514biimpa 294 . . . . . . 7 ((∃𝑦 𝑦𝑥𝑥 ⊆ {∅}) → 𝑥 = {∅})
1615olcd 724 . . . . . 6 ((∃𝑦 𝑦𝑥𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1716ex 114 . . . . 5 (∃𝑦 𝑦𝑥 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1813, 17jaoi 706 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1918alimi 1432 . . 3 (∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
20 exmid01 4129 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2119, 20sylibr 133 . 2 (∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → EXMID)
2211, 21impbii 125 1 (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  wal 1330   = wceq 1332  wex 1469  wss 3076  c0 3368  {csn 3532  EXMIDwem 4126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rab 2426  df-v 2691  df-dif 3078  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-exmid 4127
This theorem is referenced by:  exmidsssn  4133
  Copyright terms: Public domain W3C validator