ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidn0m GIF version

Theorem exmidn0m 4261
Description: Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidn0m (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidn0m
StepHypRef Expression
1 simpr 110 . . . . 5 ((EXMID ∧ ∃𝑦 𝑦𝑥) → ∃𝑦 𝑦𝑥)
21olcd 736 . . . 4 ((EXMID ∧ ∃𝑦 𝑦𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
3 notm0 3489 . . . . . . 7 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
43biimpi 120 . . . . . 6 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
54adantl 277 . . . . 5 ((EXMID ∧ ¬ ∃𝑦 𝑦𝑥) → 𝑥 = ∅)
65orcd 735 . . . 4 ((EXMID ∧ ¬ ∃𝑦 𝑦𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
7 exmidexmid 4256 . . . . 5 (EXMIDDECID𝑦 𝑦𝑥)
8 exmiddc 838 . . . . 5 (DECID𝑦 𝑦𝑥 → (∃𝑦 𝑦𝑥 ∨ ¬ ∃𝑦 𝑦𝑥))
97, 8syl 14 . . . 4 (EXMID → (∃𝑦 𝑦𝑥 ∨ ¬ ∃𝑦 𝑦𝑥))
102, 6, 9mpjaodan 800 . . 3 (EXMID → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
1110alrimiv 1898 . 2 (EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
12 orc 714 . . . . . 6 (𝑥 = ∅ → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1312a1d 22 . . . . 5 (𝑥 = ∅ → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
14 sssnm 3808 . . . . . . . 8 (∃𝑦 𝑦𝑥 → (𝑥 ⊆ {∅} ↔ 𝑥 = {∅}))
1514biimpa 296 . . . . . . 7 ((∃𝑦 𝑦𝑥𝑥 ⊆ {∅}) → 𝑥 = {∅})
1615olcd 736 . . . . . 6 ((∃𝑦 𝑦𝑥𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1716ex 115 . . . . 5 (∃𝑦 𝑦𝑥 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1813, 17jaoi 718 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1918alimi 1479 . . 3 (∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
20 exmid01 4258 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2119, 20sylibr 134 . 2 (∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → EXMID)
2211, 21impbii 126 1 (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  wal 1371   = wceq 1373  wex 1516  wss 3174  c0 3468  {csn 3643  EXMIDwem 4254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-exmid 4255
This theorem is referenced by:  exmidsssn  4262
  Copyright terms: Public domain W3C validator