ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidn0m GIF version

Theorem exmidn0m 4180
Description: Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidn0m (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidn0m
StepHypRef Expression
1 simpr 109 . . . . 5 ((EXMID ∧ ∃𝑦 𝑦𝑥) → ∃𝑦 𝑦𝑥)
21olcd 724 . . . 4 ((EXMID ∧ ∃𝑦 𝑦𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
3 notm0 3429 . . . . . . 7 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
43biimpi 119 . . . . . 6 (¬ ∃𝑦 𝑦𝑥𝑥 = ∅)
54adantl 275 . . . . 5 ((EXMID ∧ ¬ ∃𝑦 𝑦𝑥) → 𝑥 = ∅)
65orcd 723 . . . 4 ((EXMID ∧ ¬ ∃𝑦 𝑦𝑥) → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
7 exmidexmid 4175 . . . . 5 (EXMIDDECID𝑦 𝑦𝑥)
8 exmiddc 826 . . . . 5 (DECID𝑦 𝑦𝑥 → (∃𝑦 𝑦𝑥 ∨ ¬ ∃𝑦 𝑦𝑥))
97, 8syl 14 . . . 4 (EXMID → (∃𝑦 𝑦𝑥 ∨ ¬ ∃𝑦 𝑦𝑥))
102, 6, 9mpjaodan 788 . . 3 (EXMID → (𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
1110alrimiv 1862 . 2 (EXMID → ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
12 orc 702 . . . . . 6 (𝑥 = ∅ → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1312a1d 22 . . . . 5 (𝑥 = ∅ → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
14 sssnm 3734 . . . . . . . 8 (∃𝑦 𝑦𝑥 → (𝑥 ⊆ {∅} ↔ 𝑥 = {∅}))
1514biimpa 294 . . . . . . 7 ((∃𝑦 𝑦𝑥𝑥 ⊆ {∅}) → 𝑥 = {∅})
1615olcd 724 . . . . . 6 ((∃𝑦 𝑦𝑥𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1716ex 114 . . . . 5 (∃𝑦 𝑦𝑥 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1813, 17jaoi 706 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1918alimi 1443 . . 3 (∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
20 exmid01 4177 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2119, 20sylibr 133 . 2 (∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥) → EXMID)
2211, 21impbii 125 1 (EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  wal 1341   = wceq 1343  wex 1480  wss 3116  c0 3409  {csn 3576  EXMIDwem 4173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-exmid 4174
This theorem is referenced by:  exmidsssn  4181
  Copyright terms: Public domain W3C validator