| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1cocnv1 | GIF version | ||
| Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.) |
| Ref | Expression |
|---|---|
| f1cocnv1 | ⊢ (𝐹:𝐴–1-1→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f1orn 5582 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 2 | f1ococnv1 5600 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 I cid 4378 ◡ccnv 4717 ran crn 4719 ↾ cres 4720 ∘ ccom 4722 –1-1→wf1 5314 –1-1-onto→wf1o 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: f1eqcocnv 5914 |
| Copyright terms: Public domain | W3C validator |