ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssres Unicode version

Theorem fssres 5363
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fssres  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )

Proof of Theorem fssres
StepHypRef Expression
1 df-f 5192 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 fnssres 5301 . . . . 5  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( F  |`  C )  Fn  C )
3 resss 4908 . . . . . . 7  |-  ( F  |`  C )  C_  F
4 rnss 4834 . . . . . . 7  |-  ( ( F  |`  C )  C_  F  ->  ran  ( F  |`  C )  C_  ran  F )
53, 4ax-mp 5 . . . . . 6  |-  ran  ( F  |`  C )  C_  ran  F
6 sstr 3150 . . . . . 6  |-  ( ( ran  ( F  |`  C )  C_  ran  F  /\  ran  F  C_  B )  ->  ran  ( F  |`  C ) 
C_  B )
75, 6mpan 421 . . . . 5  |-  ( ran 
F  C_  B  ->  ran  ( F  |`  C ) 
C_  B )
82, 7anim12i 336 . . . 4  |-  ( ( ( F  Fn  A  /\  C  C_  A )  /\  ran  F  C_  B )  ->  (
( F  |`  C )  Fn  C  /\  ran  ( F  |`  C ) 
C_  B ) )
98an32s 558 . . 3  |-  ( ( ( F  Fn  A  /\  ran  F  C_  B
)  /\  C  C_  A
)  ->  ( ( F  |`  C )  Fn  C  /\  ran  ( F  |`  C )  C_  B ) )
101, 9sylanb 282 . 2  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( ( F  |`  C )  Fn  C  /\  ran  ( F  |`  C )  C_  B
) )
11 df-f 5192 . 2  |-  ( ( F  |`  C ) : C --> B  <->  ( ( F  |`  C )  Fn  C  /\  ran  ( F  |`  C )  C_  B ) )
1210, 11sylibr 133 1  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3116   ran crn 4605    |` cres 4606    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  fssresd  5364  fssres2  5365  fresin  5366  f1ssres  5402  feqresmpt  5540  f2ndf  6194  elmapssres  6639  pmresg  6642  finomni  7104  fseq1p1m1  10029  hmeores  12955  limcdifap  13271  012of  13875  2o01f  13876
  Copyright terms: Public domain W3C validator