ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssres Unicode version

Theorem fssres 5473
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
fssres  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )

Proof of Theorem fssres
StepHypRef Expression
1 df-f 5294 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 fnssres 5408 . . . . 5  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( F  |`  C )  Fn  C )
3 resss 5002 . . . . . . 7  |-  ( F  |`  C )  C_  F
4 rnss 4927 . . . . . . 7  |-  ( ( F  |`  C )  C_  F  ->  ran  ( F  |`  C )  C_  ran  F )
53, 4ax-mp 5 . . . . . 6  |-  ran  ( F  |`  C )  C_  ran  F
6 sstr 3209 . . . . . 6  |-  ( ( ran  ( F  |`  C )  C_  ran  F  /\  ran  F  C_  B )  ->  ran  ( F  |`  C ) 
C_  B )
75, 6mpan 424 . . . . 5  |-  ( ran 
F  C_  B  ->  ran  ( F  |`  C ) 
C_  B )
82, 7anim12i 338 . . . 4  |-  ( ( ( F  Fn  A  /\  C  C_  A )  /\  ran  F  C_  B )  ->  (
( F  |`  C )  Fn  C  /\  ran  ( F  |`  C ) 
C_  B ) )
98an32s 568 . . 3  |-  ( ( ( F  Fn  A  /\  ran  F  C_  B
)  /\  C  C_  A
)  ->  ( ( F  |`  C )  Fn  C  /\  ran  ( F  |`  C )  C_  B ) )
101, 9sylanb 284 . 2  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( ( F  |`  C )  Fn  C  /\  ran  ( F  |`  C )  C_  B
) )
11 df-f 5294 . 2  |-  ( ( F  |`  C ) : C --> B  <->  ( ( F  |`  C )  Fn  C  /\  ran  ( F  |`  C )  C_  B ) )
1210, 11sylibr 134 1  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3174   ran crn 4694    |` cres 4695    Fn wfn 5285   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  fssresd  5474  fssres2  5475  fresin  5476  f1ssres  5512  feqresmpt  5656  f2ndf  6335  elmapssres  6783  pmresg  6786  finomni  7268  fseq1p1m1  10251  seqf1oglem2  10702  wrdred1  11073  resmhm  13434  resghm  13711  hmeores  14902  limcdifap  15249  012of  16130  2o01f  16131
  Copyright terms: Public domain W3C validator