ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabex Unicode version

Theorem fabex 5396
Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
Hypotheses
Ref Expression
fabex.1  |-  A  e. 
_V
fabex.2  |-  B  e. 
_V
fabex.3  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
Assertion
Ref Expression
fabex  |-  F  e. 
_V
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem fabex
StepHypRef Expression
1 fabex.1 . 2  |-  A  e. 
_V
2 fabex.2 . 2  |-  B  e. 
_V
3 fabex.3 . . 3  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
43fabexg 5395 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  F  e.  _V )
51, 2, 4mp2an 426 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2146   {cab 2161   _Vcvv 2735   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator