ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabex Unicode version

Theorem fabex 5234
Description: Existence of a set of functions. (Contributed by NM, 3-Dec-2007.)
Hypotheses
Ref Expression
fabex.1  |-  A  e. 
_V
fabex.2  |-  B  e. 
_V
fabex.3  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
Assertion
Ref Expression
fabex  |-  F  e. 
_V
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem fabex
StepHypRef Expression
1 fabex.1 . 2  |-  A  e. 
_V
2 fabex.2 . 2  |-  B  e. 
_V
3 fabex.3 . . 3  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
43fabexg 5233 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  F  e.  _V )
51, 2, 4mp2an 418 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1296    e. wcel 1445   {cab 2081   _Vcvv 2633   -->wf 5045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474  df-cnv 4475  df-dm 4477  df-rn 4478  df-fun 5051  df-fn 5052  df-f 5053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator