ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfex Unicode version

Theorem dmfex 5406
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dmfex  |-  ( ( F  e.  C  /\  F : A --> B )  ->  A  e.  _V )

Proof of Theorem dmfex
StepHypRef Expression
1 fdm 5372 . . 3  |-  ( F : A --> B  ->  dom  F  =  A )
2 dmexg 4892 . . . 4  |-  ( F  e.  C  ->  dom  F  e.  _V )
3 eleq1 2240 . . . 4  |-  ( dom 
F  =  A  -> 
( dom  F  e.  _V 
<->  A  e.  _V )
)
42, 3imbitrid 154 . . 3  |-  ( dom 
F  =  A  -> 
( F  e.  C  ->  A  e.  _V )
)
51, 4syl 14 . 2  |-  ( F : A --> B  -> 
( F  e.  C  ->  A  e.  _V )
)
65impcom 125 1  |-  ( ( F  e.  C  /\  F : A --> B )  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2738   dom cdm 4627   -->wf 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-cnv 4635  df-dm 4637  df-rn 4638  df-fn 5220  df-f 5221
This theorem is referenced by:  fopwdom  6836
  Copyright terms: Public domain W3C validator