ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmff Unicode version

Theorem lmff 14102
Description: If  F converges, there is some upper integer set on which  F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmff.1  |-  Z  =  ( ZZ>= `  M )
lmff.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmff.4  |-  ( ph  ->  M  e.  ZZ )
lmff.5  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Assertion
Ref Expression
lmff  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
Distinct variable groups:    j, F    j, J    j, M    ph, j    j, X    j, Z

Proof of Theorem lmff
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmff.5 . . . . . 6  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
2 eldm2g 4835 . . . . . . 7  |-  ( F  e.  dom  ( ~~> t `  J )  ->  ( F  e.  dom  ( ~~> t `  J )  <->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) ) )
32ibi 176 . . . . . 6  |-  ( F  e.  dom  ( ~~> t `  J )  ->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  E. y <. F , 
y >.  e.  ( ~~> t `  J ) )
5 df-br 4016 . . . . . 6  |-  ( F ( ~~> t `  J
) y  <->  <. F , 
y >.  e.  ( ~~> t `  J ) )
65exbii 1615 . . . . 5  |-  ( E. y  F ( ~~> t `  J ) y  <->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) )
74, 6sylibr 134 . . . 4  |-  ( ph  ->  E. y  F ( ~~> t `  J ) y )
8 lmff.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 lmcl 14098 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) y )  -> 
y  e.  X )
108, 9sylan 283 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  y  e.  X )
11 eleq2 2251 . . . . . . 7  |-  ( j  =  X  ->  (
y  e.  j  <->  y  e.  X ) )
12 feq3 5362 . . . . . . . 8  |-  ( j  =  X  ->  (
( F  |`  x
) : x --> j  <->  ( F  |`  x ) : x --> X ) )
1312rexbidv 2488 . . . . . . 7  |-  ( j  =  X  ->  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j  <->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) )
1411, 13imbi12d 234 . . . . . 6  |-  ( j  =  X  ->  (
( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j )  <-> 
( y  e.  X  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) ) )
158lmbr 14066 . . . . . . . 8  |-  ( ph  ->  ( F ( ~~> t `  J ) y  <->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) ) ) )
1615biimpa 296 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) ) )
1716simp3d 1012 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) )
18 toponmax 13878 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
198, 18syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  J )
2019adantr 276 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  X  e.  J )
2114, 17, 20rspcdva 2858 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  (
y  e.  X  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) )
2210, 21mpd 13 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X )
237, 22exlimddv 1908 . . 3  |-  ( ph  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X )
24 uzf 9545 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
25 ffn 5377 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
26 reseq2 4914 . . . . . 6  |-  ( x  =  ( ZZ>= `  j
)  ->  ( F  |`  x )  =  ( F  |`  ( ZZ>= `  j ) ) )
27 id 19 . . . . . 6  |-  ( x  =  ( ZZ>= `  j
)  ->  x  =  ( ZZ>= `  j )
)
2826, 27feq12d 5367 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( ( F  |`  x ) : x --> X  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X ) )
2928rexrn 5666 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )
3024, 25, 29mp2b 8 . . 3  |-  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X )
3123, 30sylib 122 . 2  |-  ( ph  ->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
32 lmff.4 . . . 4  |-  ( ph  ->  M  e.  ZZ )
33 lmff.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
3433rexuz3 11013 . . . 4  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. x  e.  ( ZZ>=
`  j ) ( x  e.  dom  F  /\  ( F `  x
)  e.  X )  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j ) ( x  e.  dom  F  /\  ( F `  x )  e.  X ) ) )
3532, 34syl 14 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
)  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j ) ( x  e.  dom  F  /\  ( F `  x )  e.  X ) ) )
3616simp1d 1010 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  F  e.  ( X  ^pm  CC ) )
377, 36exlimddv 1908 . . . . . 6  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
38 pmfun 6682 . . . . . 6  |-  ( F  e.  ( X  ^pm  CC )  ->  Fun  F )
3937, 38syl 14 . . . . 5  |-  ( ph  ->  Fun  F )
40 ffvresb 5692 . . . . 5  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X  <->  A. x  e.  ( ZZ>=
`  j ) ( x  e.  dom  F  /\  ( F `  x
)  e.  X ) ) )
4139, 40syl 14 . . . 4  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4241rexbidv 2488 . . 3  |-  ( ph  ->  ( E. j  e.  Z  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  Z  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4341rexbidv 2488 . . 3  |-  ( ph  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4435, 42, 433bitr4d 220 . 2  |-  ( ph  ->  ( E. j  e.  Z  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X ) )
4531, 44mpbird 167 1  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363   E.wex 1502    e. wcel 2158   A.wral 2465   E.wrex 2466   ~Pcpw 3587   <.cop 3607   class class class wbr 4015   dom cdm 4638   ran crn 4639    |` cres 4640   Fun wfun 5222    Fn wfn 5223   -->wf 5224   ` cfv 5228  (class class class)co 5888    ^pm cpm 6663   CCcc 7823   ZZcz 9267   ZZ>=cuz 9542  TopOnctopon 13863   ~~> tclm 14040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pm 6665  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-top 13851  df-topon 13864  df-lm 14043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator