ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmff Unicode version

Theorem lmff 14417
Description: If  F converges, there is some upper integer set on which  F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmff.1  |-  Z  =  ( ZZ>= `  M )
lmff.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmff.4  |-  ( ph  ->  M  e.  ZZ )
lmff.5  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Assertion
Ref Expression
lmff  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
Distinct variable groups:    j, F    j, J    j, M    ph, j    j, X    j, Z

Proof of Theorem lmff
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmff.5 . . . . . 6  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
2 eldm2g 4858 . . . . . . 7  |-  ( F  e.  dom  ( ~~> t `  J )  ->  ( F  e.  dom  ( ~~> t `  J )  <->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) ) )
32ibi 176 . . . . . 6  |-  ( F  e.  dom  ( ~~> t `  J )  ->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  E. y <. F , 
y >.  e.  ( ~~> t `  J ) )
5 df-br 4030 . . . . . 6  |-  ( F ( ~~> t `  J
) y  <->  <. F , 
y >.  e.  ( ~~> t `  J ) )
65exbii 1616 . . . . 5  |-  ( E. y  F ( ~~> t `  J ) y  <->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) )
74, 6sylibr 134 . . . 4  |-  ( ph  ->  E. y  F ( ~~> t `  J ) y )
8 lmff.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 lmcl 14413 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) y )  -> 
y  e.  X )
108, 9sylan 283 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  y  e.  X )
11 eleq2 2257 . . . . . . 7  |-  ( j  =  X  ->  (
y  e.  j  <->  y  e.  X ) )
12 feq3 5388 . . . . . . . 8  |-  ( j  =  X  ->  (
( F  |`  x
) : x --> j  <->  ( F  |`  x ) : x --> X ) )
1312rexbidv 2495 . . . . . . 7  |-  ( j  =  X  ->  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j  <->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) )
1411, 13imbi12d 234 . . . . . 6  |-  ( j  =  X  ->  (
( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j )  <-> 
( y  e.  X  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) ) )
158lmbr 14381 . . . . . . . 8  |-  ( ph  ->  ( F ( ~~> t `  J ) y  <->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) ) ) )
1615biimpa 296 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) ) )
1716simp3d 1013 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) )
18 toponmax 14193 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
198, 18syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  J )
2019adantr 276 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  X  e.  J )
2114, 17, 20rspcdva 2869 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  (
y  e.  X  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) )
2210, 21mpd 13 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X )
237, 22exlimddv 1910 . . 3  |-  ( ph  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X )
24 uzf 9595 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
25 ffn 5403 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
26 reseq2 4937 . . . . . 6  |-  ( x  =  ( ZZ>= `  j
)  ->  ( F  |`  x )  =  ( F  |`  ( ZZ>= `  j ) ) )
27 id 19 . . . . . 6  |-  ( x  =  ( ZZ>= `  j
)  ->  x  =  ( ZZ>= `  j )
)
2826, 27feq12d 5393 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( ( F  |`  x ) : x --> X  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X ) )
2928rexrn 5695 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )
3024, 25, 29mp2b 8 . . 3  |-  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X )
3123, 30sylib 122 . 2  |-  ( ph  ->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
32 lmff.4 . . . 4  |-  ( ph  ->  M  e.  ZZ )
33 lmff.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
3433rexuz3 11134 . . . 4  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. x  e.  ( ZZ>=
`  j ) ( x  e.  dom  F  /\  ( F `  x
)  e.  X )  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j ) ( x  e.  dom  F  /\  ( F `  x )  e.  X ) ) )
3532, 34syl 14 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
)  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j ) ( x  e.  dom  F  /\  ( F `  x )  e.  X ) ) )
3616simp1d 1011 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  F  e.  ( X  ^pm  CC ) )
377, 36exlimddv 1910 . . . . . 6  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
38 pmfun 6722 . . . . . 6  |-  ( F  e.  ( X  ^pm  CC )  ->  Fun  F )
3937, 38syl 14 . . . . 5  |-  ( ph  ->  Fun  F )
40 ffvresb 5721 . . . . 5  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X  <->  A. x  e.  ( ZZ>=
`  j ) ( x  e.  dom  F  /\  ( F `  x
)  e.  X ) ) )
4139, 40syl 14 . . . 4  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4241rexbidv 2495 . . 3  |-  ( ph  ->  ( E. j  e.  Z  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  Z  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4341rexbidv 2495 . . 3  |-  ( ph  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4435, 42, 433bitr4d 220 . 2  |-  ( ph  ->  ( E. j  e.  Z  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X ) )
4531, 44mpbird 167 1  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   ~Pcpw 3601   <.cop 3621   class class class wbr 4029   dom cdm 4659   ran crn 4660    |` cres 4661   Fun wfun 5248    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918    ^pm cpm 6703   CCcc 7870   ZZcz 9317   ZZ>=cuz 9592  TopOnctopon 14178   ~~> tclm 14355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pm 6705  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-top 14166  df-topon 14179  df-lm 14358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator