| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmff | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| lmff.1 |
|
| lmff.3 |
|
| lmff.4 |
|
| lmff.5 |
|
| Ref | Expression |
|---|---|
| lmff |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.5 |
. . . . . 6
| |
| 2 | eldm2g 4873 |
. . . . . . 7
| |
| 3 | 2 | ibi 176 |
. . . . . 6
|
| 4 | 1, 3 | syl 14 |
. . . . 5
|
| 5 | df-br 4044 |
. . . . . 6
| |
| 6 | 5 | exbii 1627 |
. . . . 5
|
| 7 | 4, 6 | sylibr 134 |
. . . 4
|
| 8 | lmff.3 |
. . . . . 6
| |
| 9 | lmcl 14659 |
. . . . . 6
| |
| 10 | 8, 9 | sylan 283 |
. . . . 5
|
| 11 | eleq2 2268 |
. . . . . . 7
| |
| 12 | feq3 5409 |
. . . . . . . 8
| |
| 13 | 12 | rexbidv 2506 |
. . . . . . 7
|
| 14 | 11, 13 | imbi12d 234 |
. . . . . 6
|
| 15 | 8 | lmbr 14627 |
. . . . . . . 8
|
| 16 | 15 | biimpa 296 |
. . . . . . 7
|
| 17 | 16 | simp3d 1013 |
. . . . . 6
|
| 18 | toponmax 14439 |
. . . . . . . 8
| |
| 19 | 8, 18 | syl 14 |
. . . . . . 7
|
| 20 | 19 | adantr 276 |
. . . . . 6
|
| 21 | 14, 17, 20 | rspcdva 2881 |
. . . . 5
|
| 22 | 10, 21 | mpd 13 |
. . . 4
|
| 23 | 7, 22 | exlimddv 1921 |
. . 3
|
| 24 | uzf 9650 |
. . . 4
| |
| 25 | ffn 5424 |
. . . 4
| |
| 26 | reseq2 4953 |
. . . . . 6
| |
| 27 | id 19 |
. . . . . 6
| |
| 28 | 26, 27 | feq12d 5414 |
. . . . 5
|
| 29 | 28 | rexrn 5716 |
. . . 4
|
| 30 | 24, 25, 29 | mp2b 8 |
. . 3
|
| 31 | 23, 30 | sylib 122 |
. 2
|
| 32 | lmff.4 |
. . . 4
| |
| 33 | lmff.1 |
. . . . 5
| |
| 34 | 33 | rexuz3 11243 |
. . . 4
|
| 35 | 32, 34 | syl 14 |
. . 3
|
| 36 | 16 | simp1d 1011 |
. . . . . . 7
|
| 37 | 7, 36 | exlimddv 1921 |
. . . . . 6
|
| 38 | pmfun 6754 |
. . . . . 6
| |
| 39 | 37, 38 | syl 14 |
. . . . 5
|
| 40 | ffvresb 5742 |
. . . . 5
| |
| 41 | 39, 40 | syl 14 |
. . . 4
|
| 42 | 41 | rexbidv 2506 |
. . 3
|
| 43 | 41 | rexbidv 2506 |
. . 3
|
| 44 | 35, 42, 43 | 3bitr4d 220 |
. 2
|
| 45 | 31, 44 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pm 6737 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-top 14412 df-topon 14425 df-lm 14604 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |