ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmff Unicode version

Theorem lmff 13002
Description: If  F converges, there is some upper integer set on which  F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmff.1  |-  Z  =  ( ZZ>= `  M )
lmff.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmff.4  |-  ( ph  ->  M  e.  ZZ )
lmff.5  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Assertion
Ref Expression
lmff  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
Distinct variable groups:    j, F    j, J    j, M    ph, j    j, X    j, Z

Proof of Theorem lmff
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmff.5 . . . . . 6  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
2 eldm2g 4805 . . . . . . 7  |-  ( F  e.  dom  ( ~~> t `  J )  ->  ( F  e.  dom  ( ~~> t `  J )  <->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) ) )
32ibi 175 . . . . . 6  |-  ( F  e.  dom  ( ~~> t `  J )  ->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  E. y <. F , 
y >.  e.  ( ~~> t `  J ) )
5 df-br 3988 . . . . . 6  |-  ( F ( ~~> t `  J
) y  <->  <. F , 
y >.  e.  ( ~~> t `  J ) )
65exbii 1598 . . . . 5  |-  ( E. y  F ( ~~> t `  J ) y  <->  E. y <. F ,  y >.  e.  ( ~~> t `  J
) )
74, 6sylibr 133 . . . 4  |-  ( ph  ->  E. y  F ( ~~> t `  J ) y )
8 lmff.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 lmcl 12998 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) y )  -> 
y  e.  X )
108, 9sylan 281 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  y  e.  X )
11 eleq2 2234 . . . . . . 7  |-  ( j  =  X  ->  (
y  e.  j  <->  y  e.  X ) )
12 feq3 5330 . . . . . . . 8  |-  ( j  =  X  ->  (
( F  |`  x
) : x --> j  <->  ( F  |`  x ) : x --> X ) )
1312rexbidv 2471 . . . . . . 7  |-  ( j  =  X  ->  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j  <->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) )
1411, 13imbi12d 233 . . . . . 6  |-  ( j  =  X  ->  (
( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j )  <-> 
( y  e.  X  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) ) )
158lmbr 12966 . . . . . . . 8  |-  ( ph  ->  ( F ( ~~> t `  J ) y  <->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) ) ) )
1615biimpa 294 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) ) )
1716simp3d 1006 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  A. j  e.  J  ( y  e.  j  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> j ) )
18 toponmax 12776 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
198, 18syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  J )
2019adantr 274 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  X  e.  J )
2114, 17, 20rspcdva 2839 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  (
y  e.  X  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X ) )
2210, 21mpd 13 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X )
237, 22exlimddv 1891 . . 3  |-  ( ph  ->  E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X )
24 uzf 9477 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
25 ffn 5345 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
26 reseq2 4884 . . . . . 6  |-  ( x  =  ( ZZ>= `  j
)  ->  ( F  |`  x )  =  ( F  |`  ( ZZ>= `  j ) ) )
27 id 19 . . . . . 6  |-  ( x  =  ( ZZ>= `  j
)  ->  x  =  ( ZZ>= `  j )
)
2826, 27feq12d 5335 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( ( F  |`  x ) : x --> X  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X ) )
2928rexrn 5630 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X ) )
3024, 25, 29mp2b 8 . . 3  |-  ( E. x  e.  ran  ZZ>= ( F  |`  x ) : x --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X )
3123, 30sylib 121 . 2  |-  ( ph  ->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
32 lmff.4 . . . 4  |-  ( ph  ->  M  e.  ZZ )
33 lmff.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
3433rexuz3 10941 . . . 4  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. x  e.  ( ZZ>=
`  j ) ( x  e.  dom  F  /\  ( F `  x
)  e.  X )  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j ) ( x  e.  dom  F  /\  ( F `  x )  e.  X ) ) )
3532, 34syl 14 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
)  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j ) ( x  e.  dom  F  /\  ( F `  x )  e.  X ) ) )
3616simp1d 1004 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  J )
y )  ->  F  e.  ( X  ^pm  CC ) )
377, 36exlimddv 1891 . . . . . 6  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
38 pmfun 6642 . . . . . 6  |-  ( F  e.  ( X  ^pm  CC )  ->  Fun  F )
3937, 38syl 14 . . . . 5  |-  ( ph  ->  Fun  F )
40 ffvresb 5656 . . . . 5  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> X  <->  A. x  e.  ( ZZ>=
`  j ) ( x  e.  dom  F  /\  ( F `  x
)  e.  X ) ) )
4139, 40syl 14 . . . 4  |-  ( ph  ->  ( ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4241rexbidv 2471 . . 3  |-  ( ph  ->  ( E. j  e.  Z  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  Z  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4341rexbidv 2471 . . 3  |-  ( ph  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  ZZ  A. x  e.  ( ZZ>= `  j )
( x  e.  dom  F  /\  ( F `  x )  e.  X
) ) )
4435, 42, 433bitr4d 219 . 2  |-  ( ph  ->  ( E. j  e.  Z  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> X ) )
4531, 44mpbird 166 1  |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   ~Pcpw 3564   <.cop 3584   class class class wbr 3987   dom cdm 4609   ran crn 4610    |` cres 4611   Fun wfun 5190    Fn wfn 5191   -->wf 5192   ` cfv 5196  (class class class)co 5850    ^pm cpm 6623   CCcc 7759   ZZcz 9199   ZZ>=cuz 9474  TopOnctopon 12761   ~~> tclm 12940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-pm 6625  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-top 12749  df-topon 12762  df-lm 12943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator