ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapvalg Unicode version

Theorem mapvalg 6712
Description: The value of set exponentiation.  ( A  ^m  B ) is the set of all functions that map from  B to  A. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem mapvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 6708 . . 3  |-  ( ( B  e.  D  /\  A  e.  C )  ->  { f  |  f : B --> A }  e.  _V )
21ancoms 268 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : B --> A }  e.  _V )
3 elex 2771 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
4 elex 2771 . . 3  |-  ( B  e.  D  ->  B  e.  _V )
5 feq3 5388 . . . . . 6  |-  ( x  =  A  ->  (
f : y --> x  <-> 
f : y --> A ) )
65abbidv 2311 . . . . 5  |-  ( x  =  A  ->  { f  |  f : y --> x }  =  {
f  |  f : y --> A } )
7 feq2 5387 . . . . . 6  |-  ( y  =  B  ->  (
f : y --> A  <-> 
f : B --> A ) )
87abbidv 2311 . . . . 5  |-  ( y  =  B  ->  { f  |  f : y --> A }  =  {
f  |  f : B --> A } )
9 df-map 6704 . . . . 5  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
106, 8, 9ovmpog 6053 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  {
f  |  f : B --> A }  e.  _V )  ->  ( A  ^m  B )  =  { f  |  f : B --> A }
)
11103expia 1207 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { f  |  f : B --> A }  e.  _V  ->  ( A  ^m  B )  =  {
f  |  f : B --> A } ) )
123, 4, 11syl2an 289 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { f  |  f : B --> A }  e.  _V  ->  ( A  ^m  B )  =  {
f  |  f : B --> A } ) )
132, 12mpd 13 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760   -->wf 5250  (class class class)co 5918    ^m cmap 6702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704
This theorem is referenced by:  mapval  6714  elmapg  6715  ixpconstg  6761  ptex  12875  psrval  14152  psrbasg  14159  cnovex  14364  ispsmet  14491  cncfval  14727
  Copyright terms: Public domain W3C validator