ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapvalg Unicode version

Theorem mapvalg 6600
Description: The value of set exponentiation.  ( A  ^m  B ) is the set of all functions that map from  B to  A. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem mapvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 6596 . . 3  |-  ( ( B  e.  D  /\  A  e.  C )  ->  { f  |  f : B --> A }  e.  _V )
21ancoms 266 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : B --> A }  e.  _V )
3 elex 2723 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
4 elex 2723 . . 3  |-  ( B  e.  D  ->  B  e.  _V )
5 feq3 5303 . . . . . 6  |-  ( x  =  A  ->  (
f : y --> x  <-> 
f : y --> A ) )
65abbidv 2275 . . . . 5  |-  ( x  =  A  ->  { f  |  f : y --> x }  =  {
f  |  f : y --> A } )
7 feq2 5302 . . . . . 6  |-  ( y  =  B  ->  (
f : y --> A  <-> 
f : B --> A ) )
87abbidv 2275 . . . . 5  |-  ( y  =  B  ->  { f  |  f : y --> A }  =  {
f  |  f : B --> A } )
9 df-map 6592 . . . . 5  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
106, 8, 9ovmpog 5952 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  {
f  |  f : B --> A }  e.  _V )  ->  ( A  ^m  B )  =  { f  |  f : B --> A }
)
11103expia 1187 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { f  |  f : B --> A }  e.  _V  ->  ( A  ^m  B )  =  {
f  |  f : B --> A } ) )
123, 4, 11syl2an 287 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { f  |  f : B --> A }  e.  _V  ->  ( A  ^m  B )  =  {
f  |  f : B --> A } ) )
132, 12mpd 13 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   {cab 2143   _Vcvv 2712   -->wf 5165  (class class class)co 5821    ^m cmap 6590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-map 6592
This theorem is referenced by:  mapval  6602  elmapg  6603  ixpconstg  6649  cnovex  12567  ispsmet  12694  cncfval  12930
  Copyright terms: Public domain W3C validator