ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsng Unicode version

Theorem fsng 5776
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fsng  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) )

Proof of Theorem fsng
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3654 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
21feq2d 5433 . . 3  |-  ( a  =  A  ->  ( F : { a } --> { b }  <->  F : { A } --> { b } ) )
3 opeq1 3833 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
43sneqd 3656 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
54eqeq2d 2219 . . 3  |-  ( a  =  A  ->  ( F  =  { <. a ,  b >. }  <->  F  =  { <. A ,  b
>. } ) )
62, 5bibi12d 235 . 2  |-  ( a  =  A  ->  (
( F : {
a } --> { b }  <->  F  =  { <. a ,  b >. } )  <->  ( F : { A } --> { b }  <->  F  =  { <. A ,  b >. } ) ) )
7 sneq 3654 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
8 feq3 5430 . . . 4  |-  ( { b }  =  { B }  ->  ( F : { A } --> { b }  <->  F : { A } --> { B } ) )
97, 8syl 14 . . 3  |-  ( b  =  B  ->  ( F : { A } --> { b }  <->  F : { A } --> { B } ) )
10 opeq2 3834 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1110sneqd 3656 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
1211eqeq2d 2219 . . 3  |-  ( b  =  B  ->  ( F  =  { <. A , 
b >. }  <->  F  =  { <. A ,  B >. } ) )
139, 12bibi12d 235 . 2  |-  ( b  =  B  ->  (
( F : { A } --> { b }  <-> 
F  =  { <. A ,  b >. } )  <-> 
( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) ) )
14 vex 2779 . . 3  |-  a  e. 
_V
15 vex 2779 . . 3  |-  b  e. 
_V
1614, 15fsn 5775 . 2  |-  ( F : { a } --> { b }  <->  F  =  { <. a ,  b
>. } )
176, 13, 16vtocl2g 2842 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {csn 3643   <.cop 3646   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297
This theorem is referenced by:  fsn2  5777  xpsng  5778  ftpg  5791  fseq1p1m1  10251  cats1un  11212  intopsn  13314  grp1inv  13554
  Copyright terms: Public domain W3C validator