ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsng Unicode version

Theorem fsng 5669
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fsng  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) )

Proof of Theorem fsng
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3594 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
21feq2d 5335 . . 3  |-  ( a  =  A  ->  ( F : { a } --> { b }  <->  F : { A } --> { b } ) )
3 opeq1 3765 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
43sneqd 3596 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
54eqeq2d 2182 . . 3  |-  ( a  =  A  ->  ( F  =  { <. a ,  b >. }  <->  F  =  { <. A ,  b
>. } ) )
62, 5bibi12d 234 . 2  |-  ( a  =  A  ->  (
( F : {
a } --> { b }  <->  F  =  { <. a ,  b >. } )  <->  ( F : { A } --> { b }  <->  F  =  { <. A ,  b >. } ) ) )
7 sneq 3594 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
8 feq3 5332 . . . 4  |-  ( { b }  =  { B }  ->  ( F : { A } --> { b }  <->  F : { A } --> { B } ) )
97, 8syl 14 . . 3  |-  ( b  =  B  ->  ( F : { A } --> { b }  <->  F : { A } --> { B } ) )
10 opeq2 3766 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1110sneqd 3596 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
1211eqeq2d 2182 . . 3  |-  ( b  =  B  ->  ( F  =  { <. A , 
b >. }  <->  F  =  { <. A ,  B >. } ) )
139, 12bibi12d 234 . 2  |-  ( b  =  B  ->  (
( F : { A } --> { b }  <-> 
F  =  { <. A ,  b >. } )  <-> 
( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) ) )
14 vex 2733 . . 3  |-  a  e. 
_V
15 vex 2733 . . 3  |-  b  e. 
_V
1614, 15fsn 5668 . 2  |-  ( F : { a } --> { b }  <->  F  =  { <. a ,  b
>. } )
176, 13, 16vtocl2g 2794 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {csn 3583   <.cop 3586   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by:  fsn2  5670  xpsng  5671  ftpg  5680  fseq1p1m1  10050  intopsn  12621
  Copyright terms: Public domain W3C validator