ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunf Unicode version

Theorem fsnunf 5620
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )

Proof of Theorem fsnunf
StepHypRef Expression
1 simp1 981 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  F : S --> T )
2 simp2l 1007 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  X  e.  V )
3 simp3 983 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  Y  e.  T )
4 f1osng 5408 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X }
-1-1-onto-> { Y } )
52, 3, 4syl2anc 408 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } -1-1-onto-> { Y } )
6 f1of 5367 . . . 4  |-  ( {
<. X ,  Y >. } : { X } -1-1-onto-> { Y }  ->  { <. X ,  Y >. } : { X } --> { Y } )
75, 6syl 14 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } --> { Y } )
8 simp2r 1008 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  -.  X  e.  S )
9 disjsn 3585 . . . 4  |-  ( ( S  i^i  { X } )  =  (/)  <->  -.  X  e.  S )
108, 9sylibr 133 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( S  i^i  { X }
)  =  (/) )
11 fun 5295 . . 3  |-  ( ( ( F : S --> T  /\  { <. X ,  Y >. } : { X } --> { Y }
)  /\  ( S  i^i  { X } )  =  (/) )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
121, 7, 10, 11syl21anc 1215 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
13 snssi 3664 . . . . 5  |-  ( Y  e.  T  ->  { Y }  C_  T )
14133ad2ant3 1004 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { Y }  C_  T )
15 ssequn2 3249 . . . 4  |-  ( { Y }  C_  T  <->  ( T  u.  { Y } )  =  T )
1614, 15sylib 121 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( T  u.  { Y } )  =  T )
17 feq3 5257 . . 3  |-  ( ( T  u.  { Y } )  =  T  ->  ( ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
)  <->  ( F  u.  {
<. X ,  Y >. } ) : ( S  u.  { X }
) --> T ) )
1816, 17syl 14 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  (
( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X }
) --> ( T  u.  { Y } )  <->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T ) )
1912, 18mpbid 146 1  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   <.cop 3530   -->wf 5119   -1-1-onto->wf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130
This theorem is referenced by:  tfrcllemsucfn  6250  ennnfonelemg  11916
  Copyright terms: Public domain W3C validator