ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunf Unicode version

Theorem fsnunf 5765
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )

Proof of Theorem fsnunf
StepHypRef Expression
1 simp1 999 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  F : S --> T )
2 simp2l 1025 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  X  e.  V )
3 simp3 1001 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  Y  e.  T )
4 f1osng 5548 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X }
-1-1-onto-> { Y } )
52, 3, 4syl2anc 411 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } -1-1-onto-> { Y } )
6 f1of 5507 . . . 4  |-  ( {
<. X ,  Y >. } : { X } -1-1-onto-> { Y }  ->  { <. X ,  Y >. } : { X } --> { Y } )
75, 6syl 14 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } --> { Y } )
8 simp2r 1026 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  -.  X  e.  S )
9 disjsn 3685 . . . 4  |-  ( ( S  i^i  { X } )  =  (/)  <->  -.  X  e.  S )
108, 9sylibr 134 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( S  i^i  { X }
)  =  (/) )
11 fun 5433 . . 3  |-  ( ( ( F : S --> T  /\  { <. X ,  Y >. } : { X } --> { Y }
)  /\  ( S  i^i  { X } )  =  (/) )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
121, 7, 10, 11syl21anc 1248 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
13 snssi 3767 . . . . 5  |-  ( Y  e.  T  ->  { Y }  C_  T )
14133ad2ant3 1022 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { Y }  C_  T )
15 ssequn2 3337 . . . 4  |-  ( { Y }  C_  T  <->  ( T  u.  { Y } )  =  T )
1614, 15sylib 122 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( T  u.  { Y } )  =  T )
17 feq3 5395 . . 3  |-  ( ( T  u.  { Y } )  =  T  ->  ( ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
)  <->  ( F  u.  {
<. X ,  Y >. } ) : ( S  u.  { X }
) --> T ) )
1816, 17syl 14 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  (
( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X }
) --> ( T  u.  { Y } )  <->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T ) )
1912, 18mpbid 147 1  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3451   {csn 3623   <.cop 3626   -->wf 5255   -1-1-onto->wf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266
This theorem is referenced by:  tfrcllemsucfn  6420  ennnfonelemg  12645
  Copyright terms: Public domain W3C validator