ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnima Unicode version

Theorem fnima 5414
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnima  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )

Proof of Theorem fnima
StepHypRef Expression
1 df-ima 4706 . 2  |-  ( F
" A )  =  ran  ( F  |`  A )
2 fnresdm 5404 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
32rneqd 4926 . 2  |-  ( F  Fn  A  ->  ran  ( F  |`  A )  =  ran  F )
41, 3eqtrid 2252 1  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ran crn 4694    |` cres 4695   "cima 4696    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293
This theorem is referenced by:  f1finf1o  7075  tgrest  14756
  Copyright terms: Public domain W3C validator