ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnima Unicode version

Theorem fnima 5441
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnima  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )

Proof of Theorem fnima
StepHypRef Expression
1 df-ima 4731 . 2  |-  ( F
" A )  =  ran  ( F  |`  A )
2 fnresdm 5431 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
32rneqd 4952 . 2  |-  ( F  Fn  A  ->  ran  ( F  |`  A )  =  ran  F )
41, 3eqtrid 2274 1  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   ran crn 4719    |` cres 4720   "cima 4721    Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319  df-fn 5320
This theorem is referenced by:  f1finf1o  7110  tgrest  14837
  Copyright terms: Public domain W3C validator