Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnima | GIF version |
Description: The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnima | ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4599 | . 2 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | fnresdm 5279 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
3 | 2 | rneqd 4815 | . 2 ⊢ (𝐹 Fn 𝐴 → ran (𝐹 ↾ 𝐴) = ran 𝐹) |
4 | 1, 3 | syl5eq 2202 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ran crn 4587 ↾ cres 4588 “ cima 4589 Fn wfn 5165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4592 df-rel 4593 df-cnv 4594 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-fun 5172 df-fn 5173 |
This theorem is referenced by: f1finf1o 6891 tgrest 12580 |
Copyright terms: Public domain | W3C validator |