Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnop | Unicode version |
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
fnop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3966 | . 2 | |
2 | fnbr 5269 | . 2 | |
3 | 1, 2 | sylan2br 286 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2128 cop 3563 class class class wbr 3965 wfn 5162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4589 df-rel 4590 df-dm 4593 df-fun 5169 df-fn 5170 |
This theorem is referenced by: 2elresin 5278 tfrlem9 6260 tfrexlem 6275 |
Copyright terms: Public domain | W3C validator |