ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnop Unicode version

Theorem fnop 5270
Description: The first argument of an ordered pair in a function belongs to the function's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
fnop  |-  ( ( F  Fn  A  /\  <. B ,  C >.  e.  F )  ->  B  e.  A )

Proof of Theorem fnop
StepHypRef Expression
1 df-br 3966 . 2  |-  ( B F C  <->  <. B ,  C >.  e.  F )
2 fnbr 5269 . 2  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
31, 2sylan2br 286 1  |-  ( ( F  Fn  A  /\  <. B ,  C >.  e.  F )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   <.cop 3563   class class class wbr 3965    Fn wfn 5162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4589  df-rel 4590  df-dm 4593  df-fun 5169  df-fn 5170
This theorem is referenced by:  2elresin  5278  tfrlem9  6260  tfrexlem  6275
  Copyright terms: Public domain W3C validator