ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnd Unicode version

Theorem fsnd 5526
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
fsnd.a  |-  ( ph  ->  A  e.  V )
fsnd.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
fsnd  |-  ( ph  ->  { <. A ,  B >. } : { A }
--> W )

Proof of Theorem fsnd
StepHypRef Expression
1 fsnd.a . . 3  |-  ( ph  ->  A  e.  V )
2 fsnd.b . . 3  |-  ( ph  ->  B  e.  W )
31, 2jca 306 . 2  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
4 f1sng 5525 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A } -1-1-> W )
5 f1f 5443 . 2  |-  ( {
<. A ,  B >. } : { A } -1-1->
W  ->  { <. A ,  B >. } : { A } --> W )
63, 4, 53syl 17 1  |-  ( ph  ->  { <. A ,  B >. } : { A }
--> W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   {csn 3610   <.cop 3613   -->wf 5234   -1-1->wf1 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator