| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsnd | GIF version | ||
| Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsnd | ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | fsnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
| 4 | f1sng 5549 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
| 5 | f1f 5466 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) | |
| 6 | 3, 4, 5 | 3syl 17 | 1 ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 {csn 3623 〈cop 3626 ⟶wf 5255 –1-1→wf1 5256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: snopiswrd 10962 |
| Copyright terms: Public domain | W3C validator |