Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsnd | GIF version |
Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
fsnd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
fsnd | ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsnd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | fsnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
4 | f1sng 5495 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | |
5 | f1f 5413 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) | |
6 | 3, 4, 5 | 3syl 17 | 1 ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 {csn 3589 〈cop 3592 ⟶wf 5204 –1-1→wf1 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |