ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssres2 Unicode version

Theorem fssres2 5395
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
fssres2  |-  ( ( ( F  |`  A ) : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )

Proof of Theorem fssres2
StepHypRef Expression
1 fssres 5393 . 2  |-  ( ( ( F  |`  A ) : A --> B  /\  C  C_  A )  -> 
( ( F  |`  A )  |`  C ) : C --> B )
2 resabs1 4938 . . . 4  |-  ( C 
C_  A  ->  (
( F  |`  A )  |`  C )  =  ( F  |`  C )
)
32feq1d 5354 . . 3  |-  ( C 
C_  A  ->  (
( ( F  |`  A )  |`  C ) : C --> B  <->  ( F  |`  C ) : C --> B ) )
43adantl 277 . 2  |-  ( ( ( F  |`  A ) : A --> B  /\  C  C_  A )  -> 
( ( ( F  |`  A )  |`  C ) : C --> B  <->  ( F  |`  C ) : C --> B ) )
51, 4mpbid 147 1  |-  ( ( ( F  |`  A ) : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    C_ wss 3131    |` cres 4630   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by:  frecsuclem  6409
  Copyright terms: Public domain W3C validator