ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssres2 GIF version

Theorem fssres2 5447
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
fssres2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)

Proof of Theorem fssres2
StepHypRef Expression
1 fssres 5445 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → ((𝐹𝐴) ↾ 𝐶):𝐶𝐵)
2 resabs1 4985 . . . 4 (𝐶𝐴 → ((𝐹𝐴) ↾ 𝐶) = (𝐹𝐶))
32feq1d 5406 . . 3 (𝐶𝐴 → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
43adantl 277 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
51, 4mpbid 147 1 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wss 3165  cres 4675  wf 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-fun 5270  df-fn 5271  df-f 5272
This theorem is referenced by:  frecsuclem  6482
  Copyright terms: Public domain W3C validator