ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssres2 GIF version

Theorem fssres2 5365
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
fssres2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)

Proof of Theorem fssres2
StepHypRef Expression
1 fssres 5363 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → ((𝐹𝐴) ↾ 𝐶):𝐶𝐵)
2 resabs1 4913 . . . 4 (𝐶𝐴 → ((𝐹𝐴) ↾ 𝐶) = (𝐹𝐶))
32feq1d 5324 . . 3 (𝐶𝐴 → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
43adantl 275 . 2 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (((𝐹𝐴) ↾ 𝐶):𝐶𝐵 ↔ (𝐹𝐶):𝐶𝐵))
51, 4mpbid 146 1 (((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wss 3116  cres 4606  wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  frecsuclem  6374
  Copyright terms: Public domain W3C validator