![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fssres2 | GIF version |
Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.) |
Ref | Expression |
---|---|
fssres2 | ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssres 5393 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵) | |
2 | resabs1 4938 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 → ((𝐹 ↾ 𝐴) ↾ 𝐶) = (𝐹 ↾ 𝐶)) | |
3 | 2 | feq1d 5354 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
4 | 3 | adantl 277 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐴) ↾ 𝐶):𝐶⟶𝐵 ↔ (𝐹 ↾ 𝐶):𝐶⟶𝐵)) |
5 | 1, 4 | mpbid 147 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ⊆ wss 3131 ↾ cres 4630 ⟶wf 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-fun 5220 df-fn 5221 df-f 5222 |
This theorem is referenced by: frecsuclem 6410 |
Copyright terms: Public domain | W3C validator |