ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssresd Unicode version

Theorem fssresd 5364
Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssresd.1  |-  ( ph  ->  F : A --> B )
fssresd.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
fssresd  |-  ( ph  ->  ( F  |`  C ) : C --> B )

Proof of Theorem fssresd
StepHypRef Expression
1 fssresd.1 . 2  |-  ( ph  ->  F : A --> B )
2 fssresd.2 . 2  |-  ( ph  ->  C  C_  A )
3 fssres 5363 . 2  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( F  |`  C ) : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3116    |` cres 4606   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  cnrest  12875  cnptopresti  12878  cnptoprest  12879  psmetres2  12973  xmetres2  13019  metres2  13021  xmetresbl  13080  rescncf  13208  trilpolemlt1  13920
  Copyright terms: Public domain W3C validator