ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssresd Unicode version

Theorem fssresd 5422
Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssresd.1  |-  ( ph  ->  F : A --> B )
fssresd.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
fssresd  |-  ( ph  ->  ( F  |`  C ) : C --> B )

Proof of Theorem fssresd
StepHypRef Expression
1 fssresd.1 . 2  |-  ( ph  ->  F : A --> B )
2 fssresd.2 . 2  |-  ( ph  ->  C  C_  A )
3 fssres 5421 . 2  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( F  |`  C ) : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3153    |` cres 4657   -->wf 5242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-fun 5248  df-fn 5249  df-f 5250
This theorem is referenced by:  gsumsplit1r  12971  znf1o  14116  cnrest  14380  cnptopresti  14383  cnptoprest  14384  psmetres2  14478  xmetres2  14524  metres2  14526  xmetresbl  14585  rescncf  14713  trilpolemlt1  15476
  Copyright terms: Public domain W3C validator