ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssresd Unicode version

Theorem fssresd 5474
Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fssresd.1  |-  ( ph  ->  F : A --> B )
fssresd.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
fssresd  |-  ( ph  ->  ( F  |`  C ) : C --> B )

Proof of Theorem fssresd
StepHypRef Expression
1 fssresd.1 . 2  |-  ( ph  ->  F : A --> B )
2 fssresd.2 . 2  |-  ( ph  ->  C  C_  A )
3 fssres 5473 . 2  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( F  |`  C ) : C --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3174    |` cres 4695   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  gsumsplit1r  13345  znf1o  14528  cnrest  14822  cnptopresti  14825  cnptoprest  14826  psmetres2  14920  xmetres2  14966  metres2  14968  xmetresbl  15027  rescncf  15168  trilpolemlt1  16182
  Copyright terms: Public domain W3C validator