ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fresin Unicode version

Theorem fresin 5396
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin  |-  ( F : A --> B  -> 
( F  |`  X ) : ( A  i^i  X ) --> B )

Proof of Theorem fresin
StepHypRef Expression
1 inss1 3357 . . 3  |-  ( A  i^i  X )  C_  A
2 fssres 5393 . . 3  |-  ( ( F : A --> B  /\  ( A  i^i  X ) 
C_  A )  -> 
( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B )
31, 2mpan2 425 . 2  |-  ( F : A --> B  -> 
( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B )
4 resres 4921 . . . 4  |-  ( ( F  |`  A )  |`  X )  =  ( F  |`  ( A  i^i  X ) )
5 ffn 5367 . . . . . 6  |-  ( F : A --> B  ->  F  Fn  A )
6 fnresdm 5327 . . . . . 6  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
75, 6syl 14 . . . . 5  |-  ( F : A --> B  -> 
( F  |`  A )  =  F )
87reseq1d 4908 . . . 4  |-  ( F : A --> B  -> 
( ( F  |`  A )  |`  X )  =  ( F  |`  X ) )
94, 8eqtr3id 2224 . . 3  |-  ( F : A --> B  -> 
( F  |`  ( A  i^i  X ) )  =  ( F  |`  X ) )
109feq1d 5354 . 2  |-  ( F : A --> B  -> 
( ( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B  <-> 
( F  |`  X ) : ( A  i^i  X ) --> B ) )
113, 10mpbid 147 1  |-  ( F : A --> B  -> 
( F  |`  X ) : ( A  i^i  X ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    i^i cin 3130    C_ wss 3131    |` cres 4630    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by:  limcresi  14220
  Copyright terms: Public domain W3C validator