ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fresin Unicode version

Theorem fresin 5366
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
fresin  |-  ( F : A --> B  -> 
( F  |`  X ) : ( A  i^i  X ) --> B )

Proof of Theorem fresin
StepHypRef Expression
1 inss1 3342 . . 3  |-  ( A  i^i  X )  C_  A
2 fssres 5363 . . 3  |-  ( ( F : A --> B  /\  ( A  i^i  X ) 
C_  A )  -> 
( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B )
31, 2mpan2 422 . 2  |-  ( F : A --> B  -> 
( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B )
4 resres 4896 . . . 4  |-  ( ( F  |`  A )  |`  X )  =  ( F  |`  ( A  i^i  X ) )
5 ffn 5337 . . . . . 6  |-  ( F : A --> B  ->  F  Fn  A )
6 fnresdm 5297 . . . . . 6  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
75, 6syl 14 . . . . 5  |-  ( F : A --> B  -> 
( F  |`  A )  =  F )
87reseq1d 4883 . . . 4  |-  ( F : A --> B  -> 
( ( F  |`  A )  |`  X )  =  ( F  |`  X ) )
94, 8eqtr3id 2213 . . 3  |-  ( F : A --> B  -> 
( F  |`  ( A  i^i  X ) )  =  ( F  |`  X ) )
109feq1d 5324 . 2  |-  ( F : A --> B  -> 
( ( F  |`  ( A  i^i  X ) ) : ( A  i^i  X ) --> B  <-> 
( F  |`  X ) : ( A  i^i  X ) --> B ) )
113, 10mpbid 146 1  |-  ( F : A --> B  -> 
( F  |`  X ) : ( A  i^i  X ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    i^i cin 3115    C_ wss 3116    |` cres 4606    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  limcresi  13275
  Copyright terms: Public domain W3C validator