ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2d Unicode version

Theorem fun2d 5456
Description: The union of functions with disjoint domains is a function, deduction version of fun2 5455. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
fun2d.f  |-  ( ph  ->  F : A --> C )
fun2d.g  |-  ( ph  ->  G : B --> C )
fun2d.i  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
Assertion
Ref Expression
fun2d  |-  ( ph  ->  ( F  u.  G
) : ( A  u.  B ) --> C )

Proof of Theorem fun2d
StepHypRef Expression
1 fun2d.f . 2  |-  ( ph  ->  F : A --> C )
2 fun2d.g . 2  |-  ( ph  ->  G : B --> C )
3 fun2d.i . 2  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
4 fun2 5455 . 2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )
51, 2, 3, 4syl21anc 1249 1  |-  ( ph  ->  ( F  u.  G
) : ( A  u.  B ) --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3165    i^i cin 3166   (/)c0 3461   -->wf 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-id 4344  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-fun 5278  df-fn 5279  df-f 5280
This theorem is referenced by:  uhgrun  15726
  Copyright terms: Public domain W3C validator