ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfco Unicode version

Theorem fnfco 5362
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnfco  |-  ( ( F  Fn  A  /\  G : B --> A )  ->  ( F  o.  G )  Fn  B
)

Proof of Theorem fnfco
StepHypRef Expression
1 df-f 5192 . 2  |-  ( G : B --> A  <->  ( G  Fn  B  /\  ran  G  C_  A ) )
2 fnco 5296 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )
323expb 1194 . 2  |-  ( ( F  Fn  A  /\  ( G  Fn  B  /\  ran  G  C_  A
) )  ->  ( F  o.  G )  Fn  B )
41, 3sylan2b 285 1  |-  ( ( F  Fn  A  /\  G : B --> A )  ->  ( F  o.  G )  Fn  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3116   ran crn 4605    o. ccom 4608    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  cocan1  5755  cocan2  5756  ofco  6068  1stcof  6131  2ndcof  6132  cc3  7209
  Copyright terms: Public domain W3C validator