ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfco Unicode version

Theorem fnfco 5450
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnfco  |-  ( ( F  Fn  A  /\  G : B --> A )  ->  ( F  o.  G )  Fn  B
)

Proof of Theorem fnfco
StepHypRef Expression
1 df-f 5275 . 2  |-  ( G : B --> A  <->  ( G  Fn  B  /\  ran  G  C_  A ) )
2 fnco 5384 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ran  G  C_  A )  ->  ( F  o.  G
)  Fn  B )
323expb 1207 . 2  |-  ( ( F  Fn  A  /\  ( G  Fn  B  /\  ran  G  C_  A
) )  ->  ( F  o.  G )  Fn  B )
41, 3sylan2b 287 1  |-  ( ( F  Fn  A  /\  G : B --> A )  ->  ( F  o.  G )  Fn  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3166   ran crn 4676    o. ccom 4679    Fn wfn 5266   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by:  cocan1  5856  cocan2  5857  ofco  6177  1stcof  6249  2ndcof  6250  cc3  7380
  Copyright terms: Public domain W3C validator