ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrun Unicode version

Theorem umgrun 15769
Description: The union  U of two multigraphs  G and  H with the same vertex set  V is a multigraph with the vertex  V and the union  ( E  u.  F ) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgrun.g  |-  ( ph  ->  G  e. UMGraph )
umgrun.h  |-  ( ph  ->  H  e. UMGraph )
umgrun.e  |-  E  =  (iEdg `  G )
umgrun.f  |-  F  =  (iEdg `  H )
umgrun.vg  |-  V  =  (Vtx `  G )
umgrun.vh  |-  ( ph  ->  (Vtx `  H )  =  V )
umgrun.i  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
umgrun.u  |-  ( ph  ->  U  e.  W )
umgrun.v  |-  ( ph  ->  (Vtx `  U )  =  V )
umgrun.un  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
Assertion
Ref Expression
umgrun  |-  ( ph  ->  U  e. UMGraph )

Proof of Theorem umgrun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 umgrun.g . . . . 5  |-  ( ph  ->  G  e. UMGraph )
2 umgrun.vg . . . . . 6  |-  V  =  (Vtx `  G )
3 umgrun.e . . . . . 6  |-  E  =  (iEdg `  G )
42, 3umgrfen 15753 . . . . 5  |-  ( G  e. UMGraph  ->  E : dom  E --> { x  e.  ~P V  |  x  ~~  2o } )
51, 4syl 14 . . . 4  |-  ( ph  ->  E : dom  E --> { x  e.  ~P V  |  x  ~~  2o } )
6 umgrun.h . . . . . 6  |-  ( ph  ->  H  e. UMGraph )
7 eqid 2206 . . . . . . 7  |-  (Vtx `  H )  =  (Vtx
`  H )
8 umgrun.f . . . . . . 7  |-  F  =  (iEdg `  H )
97, 8umgrfen 15753 . . . . . 6  |-  ( H  e. UMGraph  ->  F : dom  F --> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
)
106, 9syl 14 . . . . 5  |-  ( ph  ->  F : dom  F --> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
)
11 umgrun.vh . . . . . . . . 9  |-  ( ph  ->  (Vtx `  H )  =  V )
1211eqcomd 2212 . . . . . . . 8  |-  ( ph  ->  V  =  (Vtx `  H ) )
1312pweqd 3623 . . . . . . 7  |-  ( ph  ->  ~P V  =  ~P (Vtx `  H ) )
1413rabeqdv 2767 . . . . . 6  |-  ( ph  ->  { x  e.  ~P V  |  x  ~~  2o }  =  { x  e.  ~P (Vtx `  H
)  |  x  ~~  2o } )
1514feq3d 5421 . . . . 5  |-  ( ph  ->  ( F : dom  F --> { x  e.  ~P V  |  x  ~~  2o }  <->  F : dom  F --> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) )
1610, 15mpbird 167 . . . 4  |-  ( ph  ->  F : dom  F --> { x  e.  ~P V  |  x  ~~  2o } )
17 umgrun.i . . . 4  |-  ( ph  ->  ( dom  E  i^i  dom 
F )  =  (/) )
185, 16, 17fun2d 5458 . . 3  |-  ( ph  ->  ( E  u.  F
) : ( dom 
E  u.  dom  F
) --> { x  e. 
~P V  |  x 
~~  2o } )
19 umgrun.un . . . 4  |-  ( ph  ->  (iEdg `  U )  =  ( E  u.  F ) )
2019dmeqd 4886 . . . . 5  |-  ( ph  ->  dom  (iEdg `  U
)  =  dom  ( E  u.  F )
)
21 dmun 4891 . . . . 5  |-  dom  ( E  u.  F )  =  ( dom  E  u.  dom  F )
2220, 21eqtrdi 2255 . . . 4  |-  ( ph  ->  dom  (iEdg `  U
)  =  ( dom 
E  u.  dom  F
) )
23 umgrun.v . . . . . 6  |-  ( ph  ->  (Vtx `  U )  =  V )
2423pweqd 3623 . . . . 5  |-  ( ph  ->  ~P (Vtx `  U
)  =  ~P V
)
2524rabeqdv 2767 . . . 4  |-  ( ph  ->  { x  e.  ~P (Vtx `  U )  |  x  ~~  2o }  =  { x  e.  ~P V  |  x  ~~  2o } )
2619, 22, 25feq123d 5423 . . 3  |-  ( ph  ->  ( (iEdg `  U
) : dom  (iEdg `  U ) --> { x  e.  ~P (Vtx `  U
)  |  x  ~~  2o }  <->  ( E  u.  F ) : ( dom  E  u.  dom  F ) --> { x  e. 
~P V  |  x 
~~  2o } ) )
2718, 26mpbird 167 . 2  |-  ( ph  ->  (iEdg `  U ) : dom  (iEdg `  U
) --> { x  e. 
~P (Vtx `  U
)  |  x  ~~  2o } )
28 umgrun.u . . 3  |-  ( ph  ->  U  e.  W )
29 eqid 2206 . . . 4  |-  (Vtx `  U )  =  (Vtx
`  U )
30 eqid 2206 . . . 4  |-  (iEdg `  U )  =  (iEdg `  U )
3129, 30isumgren 15751 . . 3  |-  ( U  e.  W  ->  ( U  e. UMGraph  <->  (iEdg `  U ) : dom  (iEdg `  U
) --> { x  e. 
~P (Vtx `  U
)  |  x  ~~  2o } ) )
3228, 31syl 14 . 2  |-  ( ph  ->  ( U  e. UMGraph  <->  (iEdg `  U
) : dom  (iEdg `  U ) --> { x  e.  ~P (Vtx `  U
)  |  x  ~~  2o } ) )
3327, 32mpbird 167 1  |-  ( ph  ->  U  e. UMGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2177   {crab 2489    u. cun 3166    i^i cin 3167   (/)c0 3462   ~Pcpw 3618   class class class wbr 4048   dom cdm 4680   -->wf 5273   ` cfv 5277   2oc2o 6506    ~~ cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UMGraphcumgr 15738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fo 5283  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-umgren 15740
This theorem is referenced by:  umgrunop  15770
  Copyright terms: Public domain W3C validator