| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrun | Unicode version | ||
| Description: The union |
| Ref | Expression |
|---|---|
| umgrun.g |
|
| umgrun.h |
|
| umgrun.e |
|
| umgrun.f |
|
| umgrun.vg |
|
| umgrun.vh |
|
| umgrun.i |
|
| umgrun.u |
|
| umgrun.v |
|
| umgrun.un |
|
| Ref | Expression |
|---|---|
| umgrun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrun.g |
. . . . 5
| |
| 2 | umgrun.vg |
. . . . . 6
| |
| 3 | umgrun.e |
. . . . . 6
| |
| 4 | 2, 3 | umgrfen 15892 |
. . . . 5
|
| 5 | 1, 4 | syl 14 |
. . . 4
|
| 6 | umgrun.h |
. . . . . 6
| |
| 7 | eqid 2229 |
. . . . . . 7
| |
| 8 | umgrun.f |
. . . . . . 7
| |
| 9 | 7, 8 | umgrfen 15892 |
. . . . . 6
|
| 10 | 6, 9 | syl 14 |
. . . . 5
|
| 11 | umgrun.vh |
. . . . . . . . 9
| |
| 12 | 11 | eqcomd 2235 |
. . . . . . . 8
|
| 13 | 12 | pweqd 3654 |
. . . . . . 7
|
| 14 | 13 | rabeqdv 2793 |
. . . . . 6
|
| 15 | 14 | feq3d 5458 |
. . . . 5
|
| 16 | 10, 15 | mpbird 167 |
. . . 4
|
| 17 | umgrun.i |
. . . 4
| |
| 18 | 5, 16, 17 | fun2d 5495 |
. . 3
|
| 19 | umgrun.un |
. . . 4
| |
| 20 | 19 | dmeqd 4922 |
. . . . 5
|
| 21 | dmun 4927 |
. . . . 5
| |
| 22 | 20, 21 | eqtrdi 2278 |
. . . 4
|
| 23 | umgrun.v |
. . . . . 6
| |
| 24 | 23 | pweqd 3654 |
. . . . 5
|
| 25 | 24 | rabeqdv 2793 |
. . . 4
|
| 26 | 19, 22, 25 | feq123d 5460 |
. . 3
|
| 27 | 18, 26 | mpbird 167 |
. 2
|
| 28 | umgrun.u |
. . 3
| |
| 29 | eqid 2229 |
. . . 4
| |
| 30 | eqid 2229 |
. . . 4
| |
| 31 | 29, 30 | isumgren 15890 |
. . 3
|
| 32 | 28, 31 | syl 14 |
. 2
|
| 33 | 27, 32 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-sub 8307 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-dec 9567 df-ndx 13021 df-slot 13022 df-base 13024 df-edgf 15791 df-vtx 15800 df-iedg 15801 df-umgren 15879 |
| This theorem is referenced by: umgrunop 15912 usgrun 15976 |
| Copyright terms: Public domain | W3C validator |