ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2d GIF version

Theorem fun2d 5475
Description: The union of functions with disjoint domains is a function, deduction version of fun2 5474. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
fun2d.f (𝜑𝐹:𝐴𝐶)
fun2d.g (𝜑𝐺:𝐵𝐶)
fun2d.i (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fun2d (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fun2d
StepHypRef Expression
1 fun2d.f . 2 (𝜑𝐹:𝐴𝐶)
2 fun2d.g . 2 (𝜑𝐺:𝐵𝐶)
3 fun2d.i . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fun2 5474 . 2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 2, 3, 4syl21anc 1251 1 (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  cun 3175  cin 3176  c0 3471  wf 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-id 4361  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-fun 5296  df-fn 5297  df-f 5298
This theorem is referenced by:  uhgrun  15851  upgrun  15889  umgrun  15891
  Copyright terms: Public domain W3C validator