ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2d GIF version

Theorem fun2d 5501
Description: The union of functions with disjoint domains is a function, deduction version of fun2 5500. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
fun2d.f (𝜑𝐹:𝐴𝐶)
fun2d.g (𝜑𝐺:𝐵𝐶)
fun2d.i (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
fun2d (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fun2d
StepHypRef Expression
1 fun2d.f . 2 (𝜑𝐹:𝐴𝐶)
2 fun2d.g . 2 (𝜑𝐺:𝐵𝐶)
3 fun2d.i . 2 (𝜑 → (𝐴𝐵) = ∅)
4 fun2 5500 . 2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 2, 3, 4syl21anc 1270 1 (𝜑 → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cun 3195  cin 3196  c0 3491  wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  uhgrun  15894  upgrun  15932  umgrun  15934
  Copyright terms: Public domain W3C validator