| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun2d | GIF version | ||
| Description: The union of functions with disjoint domains is a function, deduction version of fun2 5500. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| fun2d.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| fun2d.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| fun2d.i | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| Ref | Expression |
|---|---|
| fun2d | ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fun2d.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
| 2 | fun2d.g | . 2 ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | |
| 3 | fun2d.i | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 4 | fun2 5500 | . 2 ⊢ (((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) | |
| 5 | 1, 2, 3, 4 | syl21anc 1270 | 1 ⊢ (𝜑 → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 |
| This theorem is referenced by: uhgrun 15894 upgrun 15932 umgrun 15934 |
| Copyright terms: Public domain | W3C validator |