![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl21anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
Ref | Expression |
---|---|
sylXanc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl21anc.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl21anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylXanc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sylXanc.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | jca31 309 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | syl21anc.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: issod 4321 brcogw 4798 funprg 5268 funtpg 5269 fnunsn 5325 ftpg 5702 fsnunf 5718 isotr 5819 off 6097 caofrss 6109 tfr1onlembxssdm 6346 tfrcllembxssdm 6359 pmresg 6678 ac6sfi 6900 tridc 6901 fidcenumlemrks 6954 sbthlemi8 6965 casefun 7086 caseinj 7090 djufun 7105 djuinj 7107 mulclpi 7329 archnqq 7418 addlocprlemlt 7532 addlocprlemeq 7534 addlocprlemgt 7535 mullocprlem 7571 apreim 8562 subrecap 8798 ltrec1 8847 divge0d 9739 fseq1p1m1 10096 q2submod 10387 seq3caopr2 10484 seq3distr 10515 facavg 10728 shftfibg 10831 sqrtdiv 11053 sqrtdivd 11179 mulcn2 11322 demoivreALT 11783 dvdslegcd 11967 gcdnncl 11970 qredeu 12099 rpdvds 12101 rpexp 12155 oddpwdclemodd 12174 divnumden 12198 divdenle 12199 phimullem 12227 phisum 12242 pythagtriplem4 12270 pythagtriplem8 12274 pythagtriplem9 12275 pcgcd1 12329 fldivp1 12348 pockthlem 12356 setsfun 12499 setsfun0 12500 strleund 12564 ercpbl 12755 mndpropd 12846 grpidssd 12951 grpinvssd 12952 issubg2m 13054 isnsg3 13072 eqgid 13090 lmodprop2d 13443 comet 14038 fsumcncntop 14095 mulcncf 14130 2sqlem8a 14508 2sqlem8 14509 trilpo 14830 neapmkv 14855 |
Copyright terms: Public domain | W3C validator |