ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvss Unicode version

Theorem fvss 5569
Description: The value of a function is a subset of  B if every element that could be a candidate for the value is a subset of  B. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvss  |-  ( A. x ( A F x  ->  x  C_  B
)  ->  ( F `  A )  C_  B
)
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fvss
StepHypRef Expression
1 df-fv 5263 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotass 5233 . 2  |-  ( A. x ( A F x  ->  x  C_  B
)  ->  ( iota x A F x ) 
C_  B )
31, 2eqsstrid 3226 1  |-  ( A. x ( A F x  ->  x  C_  B
)  ->  ( F `  A )  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    C_ wss 3154   class class class wbr 4030   iotacio 5214   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-iota 5216  df-fv 5263
This theorem is referenced by:  fvssunirng  5570  relfvssunirn  5571  sefvex  5576  fvmptss2  5633  tfrexlem  6389
  Copyright terms: Public domain W3C validator