ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvss Unicode version

Theorem fvss 5590
Description: The value of a function is a subset of  B if every element that could be a candidate for the value is a subset of  B. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvss  |-  ( A. x ( A F x  ->  x  C_  B
)  ->  ( F `  A )  C_  B
)
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fvss
StepHypRef Expression
1 df-fv 5279 . 2  |-  ( F `
 A )  =  ( iota x A F x )
2 iotass 5249 . 2  |-  ( A. x ( A F x  ->  x  C_  B
)  ->  ( iota x A F x ) 
C_  B )
31, 2eqsstrid 3239 1  |-  ( A. x ( A F x  ->  x  C_  B
)  ->  ( F `  A )  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    C_ wss 3166   class class class wbr 4044   iotacio 5230   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-iota 5232  df-fv 5279
This theorem is referenced by:  fvssunirng  5591  relfvssunirn  5592  sefvex  5597  fvmptss2  5654  tfrexlem  6420
  Copyright terms: Public domain W3C validator