ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvssunirng Unicode version

Theorem fvssunirng 5593
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvssunirng  |-  ( A  e.  _V  ->  ( F `  A )  C_ 
U. ran  F )

Proof of Theorem fvssunirng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . 5  |-  x  e. 
_V
2 brelrng 4910 . . . . . 6  |-  ( ( A  e.  _V  /\  x  e.  _V  /\  A F x )  ->  x  e.  ran  F )
323exp 1205 . . . . 5  |-  ( A  e.  _V  ->  (
x  e.  _V  ->  ( A F x  ->  x  e.  ran  F ) ) )
41, 3mpi 15 . . . 4  |-  ( A  e.  _V  ->  ( A F x  ->  x  e.  ran  F ) )
5 elssuni 3878 . . . 4  |-  ( x  e.  ran  F  ->  x  C_  U. ran  F
)
64, 5syl6 33 . . 3  |-  ( A  e.  _V  ->  ( A F x  ->  x  C_ 
U. ran  F )
)
76alrimiv 1897 . 2  |-  ( A  e.  _V  ->  A. x
( A F x  ->  x  C_  U. ran  F ) )
8 fvss 5592 . 2  |-  ( A. x ( A F x  ->  x  C_  U. ran  F )  ->  ( F `  A )  C_  U. ran  F )
97, 8syl 14 1  |-  ( A  e.  _V  ->  ( F `  A )  C_ 
U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    e. wcel 2176   _Vcvv 2772    C_ wss 3166   U.cuni 3850   class class class wbr 4045   ran crn 4677   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-cnv 4684  df-dm 4686  df-rn 4687  df-iota 5233  df-fv 5280
This theorem is referenced by:  fvexg  5597  ovssunirng  5981  strfvssn  12887  ptex  13129  prdsvallem  13137  prdsval  13138  xmetunirn  14863  mopnval  14947
  Copyright terms: Public domain W3C validator