ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvssunirng Unicode version

Theorem fvssunirng 5570
Description: The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvssunirng  |-  ( A  e.  _V  ->  ( F `  A )  C_ 
U. ran  F )

Proof of Theorem fvssunirng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  x  e. 
_V
2 brelrng 4894 . . . . . 6  |-  ( ( A  e.  _V  /\  x  e.  _V  /\  A F x )  ->  x  e.  ran  F )
323exp 1204 . . . . 5  |-  ( A  e.  _V  ->  (
x  e.  _V  ->  ( A F x  ->  x  e.  ran  F ) ) )
41, 3mpi 15 . . . 4  |-  ( A  e.  _V  ->  ( A F x  ->  x  e.  ran  F ) )
5 elssuni 3864 . . . 4  |-  ( x  e.  ran  F  ->  x  C_  U. ran  F
)
64, 5syl6 33 . . 3  |-  ( A  e.  _V  ->  ( A F x  ->  x  C_ 
U. ran  F )
)
76alrimiv 1885 . 2  |-  ( A  e.  _V  ->  A. x
( A F x  ->  x  C_  U. ran  F ) )
8 fvss 5569 . 2  |-  ( A. x ( A F x  ->  x  C_  U. ran  F )  ->  ( F `  A )  C_  U. ran  F )
97, 8syl 14 1  |-  ( A  e.  _V  ->  ( F `  A )  C_ 
U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    e. wcel 2164   _Vcvv 2760    C_ wss 3154   U.cuni 3836   class class class wbr 4030   ran crn 4661   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671  df-iota 5216  df-fv 5263
This theorem is referenced by:  fvexg  5574  strfvssn  12643  ptex  12878  xmetunirn  14537  mopnval  14621
  Copyright terms: Public domain W3C validator