ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvss GIF version

Theorem fvss 5510
Description: The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvss (∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (𝐹𝐴) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvss
StepHypRef Expression
1 df-fv 5206 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 iotass 5177 . 2 (∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (℩𝑥𝐴𝐹𝑥) ⊆ 𝐵)
31, 2eqsstrid 3193 1 (∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wss 3121   class class class wbr 3989  cio 5158  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160  df-fv 5206
This theorem is referenced by:  fvssunirng  5511  relfvssunirn  5512  sefvex  5517  fvmptss2  5571  tfrexlem  6313
  Copyright terms: Public domain W3C validator