| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvss | GIF version | ||
| Description: The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| fvss | ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5266 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | iotass 5236 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (℩𝑥𝐴𝐹𝑥) ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3229 | 1 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ⊆ wss 3157 class class class wbr 4033 ℩cio 5217 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: fvssunirng 5573 relfvssunirn 5574 sefvex 5579 fvmptss2 5636 tfrexlem 6392 |
| Copyright terms: Public domain | W3C validator |