Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvss | GIF version |
Description: The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
fvss | ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5206 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | iotass 5177 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (℩𝑥𝐴𝐹𝑥) ⊆ 𝐵) | |
3 | 1, 2 | eqsstrid 3193 | 1 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ⊆ wss 3121 class class class wbr 3989 ℩cio 5158 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 df-fv 5206 |
This theorem is referenced by: fvssunirng 5511 relfvssunirn 5512 sefvex 5517 fvmptss2 5571 tfrexlem 6313 |
Copyright terms: Public domain | W3C validator |