| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvss | GIF version | ||
| Description: The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| fvss | ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5287 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | iotass 5257 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (℩𝑥𝐴𝐹𝑥) ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3243 | 1 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ⊆ wss 3170 class class class wbr 4050 ℩cio 5238 ‘cfv 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-uni 3856 df-iota 5240 df-fv 5287 |
| This theorem is referenced by: fvssunirng 5603 relfvssunirn 5604 sefvex 5609 fvmptss2 5666 tfrexlem 6432 |
| Copyright terms: Public domain | W3C validator |