ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvss GIF version

Theorem fvss 5640
Description: The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
fvss (∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (𝐹𝐴) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvss
StepHypRef Expression
1 df-fv 5325 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 iotass 5295 . 2 (∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (℩𝑥𝐴𝐹𝑥) ⊆ 𝐵)
31, 2eqsstrid 3270 1 (∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wss 3197   class class class wbr 4082  cio 5275  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-iota 5277  df-fv 5325
This theorem is referenced by:  fvssunirng  5641  relfvssunirn  5642  sefvex  5647  fvmptss2  5708  tfrexlem  6478
  Copyright terms: Public domain W3C validator