| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvss | GIF version | ||
| Description: The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| fvss | ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5325 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | iotass 5295 | . 2 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (℩𝑥𝐴𝐹𝑥) ⊆ 𝐵) | |
| 3 | 1, 2 | eqsstrid 3270 | 1 ⊢ (∀𝑥(𝐴𝐹𝑥 → 𝑥 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ⊆ wss 3197 class class class wbr 4082 ℩cio 5275 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: fvssunirng 5641 relfvssunirn 5642 sefvex 5647 fvmptss2 5708 tfrexlem 6478 |
| Copyright terms: Public domain | W3C validator |