ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfvssunirn Unicode version

Theorem relfvssunirn 5615
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relfvssunirn  |-  ( Rel 
F  ->  ( F `  A )  C_  U. ran  F )

Proof of Theorem relfvssunirn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 relelrn 4933 . . . . 5  |-  ( ( Rel  F  /\  A F x )  ->  x  e.  ran  F )
21ex 115 . . . 4  |-  ( Rel 
F  ->  ( A F x  ->  x  e. 
ran  F ) )
3 elssuni 3892 . . . 4  |-  ( x  e.  ran  F  ->  x  C_  U. ran  F
)
42, 3syl6 33 . . 3  |-  ( Rel 
F  ->  ( A F x  ->  x  C_  U.
ran  F ) )
54alrimiv 1898 . 2  |-  ( Rel 
F  ->  A. x
( A F x  ->  x  C_  U. ran  F ) )
6 fvss 5613 . 2  |-  ( A. x ( A F x  ->  x  C_  U. ran  F )  ->  ( F `  A )  C_  U. ran  F )
75, 6syl 14 1  |-  ( Rel 
F  ->  ( F `  A )  C_  U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    e. wcel 2178    C_ wss 3174   U.cuni 3864   class class class wbr 4059   ran crn 4694   Rel wrel 4698   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-iota 5251  df-fv 5298
This theorem is referenced by:  relrnfvex  5617
  Copyright terms: Public domain W3C validator