ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfvssunirn Unicode version

Theorem relfvssunirn 5486
Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
relfvssunirn  |-  ( Rel 
F  ->  ( F `  A )  C_  U. ran  F )

Proof of Theorem relfvssunirn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 relelrn 4824 . . . . 5  |-  ( ( Rel  F  /\  A F x )  ->  x  e.  ran  F )
21ex 114 . . . 4  |-  ( Rel 
F  ->  ( A F x  ->  x  e. 
ran  F ) )
3 elssuni 3802 . . . 4  |-  ( x  e.  ran  F  ->  x  C_  U. ran  F
)
42, 3syl6 33 . . 3  |-  ( Rel 
F  ->  ( A F x  ->  x  C_  U.
ran  F ) )
54alrimiv 1854 . 2  |-  ( Rel 
F  ->  A. x
( A F x  ->  x  C_  U. ran  F ) )
6 fvss 5484 . 2  |-  ( A. x ( A F x  ->  x  C_  U. ran  F )  ->  ( F `  A )  C_  U. ran  F )
75, 6syl 14 1  |-  ( Rel 
F  ->  ( F `  A )  C_  U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1333    e. wcel 2128    C_ wss 3102   U.cuni 3774   class class class wbr 3967   ran crn 4589   Rel wrel 4593   ` cfv 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-xp 4594  df-rel 4595  df-cnv 4596  df-dm 4598  df-rn 4599  df-iota 5137  df-fv 5180
This theorem is referenced by:  relrnfvex  5488
  Copyright terms: Public domain W3C validator