ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inuni Unicode version

Theorem inuni 4134
Description: The intersection of a union  U. A with a class  B is equal to the union of the intersections of each element of  A with  B. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Distinct variable groups:    x, A, y   
x, B, y

Proof of Theorem inuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eluni2 3793 . . . . 5  |-  ( z  e.  U. A  <->  E. y  e.  A  z  e.  y )
21anbi1i 454 . . . 4  |-  ( ( z  e.  U. A  /\  z  e.  B
)  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B
) )
3 elin 3305 . . . 4  |-  ( z  e.  ( U. A  i^i  B )  <->  ( z  e.  U. A  /\  z  e.  B ) )
4 ancom 264 . . . . . . . 8  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  ( E. y  e.  A  x  =  ( y  i^i 
B )  /\  z  e.  x ) )
5 r19.41v 2622 . . . . . . . 8  |-  ( E. y  e.  A  ( x  =  ( y  i^i  B )  /\  z  e.  x )  <->  ( E. y  e.  A  x  =  ( y  i^i  B )  /\  z  e.  x ) )
64, 5bitr4i 186 . . . . . . 7  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  E. y  e.  A  ( x  =  ( y  i^i 
B )  /\  z  e.  x ) )
76exbii 1593 . . . . . 6  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
8 rexcom4 2749 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
97, 8bitr4i 186 . . . . 5  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. y  e.  A  E. x
( x  =  ( y  i^i  B )  /\  z  e.  x
) )
10 vex 2729 . . . . . . . . . 10  |-  y  e. 
_V
1110inex1 4116 . . . . . . . . 9  |-  ( y  i^i  B )  e. 
_V
12 eleq2 2230 . . . . . . . . 9  |-  ( x  =  ( y  i^i 
B )  ->  (
z  e.  x  <->  z  e.  ( y  i^i  B
) ) )
1311, 12ceqsexv 2765 . . . . . . . 8  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  z  e.  ( y  i^i  B
) )
14 elin 3305 . . . . . . . 8  |-  ( z  e.  ( y  i^i 
B )  <->  ( z  e.  y  /\  z  e.  B ) )
1513, 14bitri 183 . . . . . . 7  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( z  e.  y  /\  z  e.  B ) )
1615rexbii 2473 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. y  e.  A  ( z  e.  y  /\  z  e.  B ) )
17 r19.41v 2622 . . . . . 6  |-  ( E. y  e.  A  ( z  e.  y  /\  z  e.  B )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B )
)
1816, 17bitri 183 . . . . 5  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
199, 18bitri 183 . . . 4  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
202, 3, 193bitr4i 211 . . 3  |-  ( z  e.  ( U. A  i^i  B )  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
21 eluniab 3801 . . 3  |-  ( z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
2220, 21bitr4i 186 . 2  |-  ( z  e.  ( U. A  i^i  B )  <->  z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i 
B ) } )
2322eqriv 2162 1  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   E.wrex 2445    i^i cin 3115   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-in 3122  df-uni 3790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator