ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inuni Unicode version

Theorem inuni 4238
Description: The intersection of a union  U. A with a class  B is equal to the union of the intersections of each element of  A with  B. (Contributed by FL, 24-Mar-2007.)
Assertion
Ref Expression
inuni  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Distinct variable groups:    x, A, y   
x, B, y

Proof of Theorem inuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eluni2 3891 . . . . 5  |-  ( z  e.  U. A  <->  E. y  e.  A  z  e.  y )
21anbi1i 458 . . . 4  |-  ( ( z  e.  U. A  /\  z  e.  B
)  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B
) )
3 elin 3387 . . . 4  |-  ( z  e.  ( U. A  i^i  B )  <->  ( z  e.  U. A  /\  z  e.  B ) )
4 ancom 266 . . . . . . . 8  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  ( E. y  e.  A  x  =  ( y  i^i 
B )  /\  z  e.  x ) )
5 r19.41v 2687 . . . . . . . 8  |-  ( E. y  e.  A  ( x  =  ( y  i^i  B )  /\  z  e.  x )  <->  ( E. y  e.  A  x  =  ( y  i^i  B )  /\  z  e.  x ) )
64, 5bitr4i 187 . . . . . . 7  |-  ( ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i 
B ) )  <->  E. y  e.  A  ( x  =  ( y  i^i 
B )  /\  z  e.  x ) )
76exbii 1651 . . . . . 6  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
8 rexcom4 2823 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. x E. y  e.  A  ( x  =  (
y  i^i  B )  /\  z  e.  x
) )
97, 8bitr4i 187 . . . . 5  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  E. y  e.  A  E. x
( x  =  ( y  i^i  B )  /\  z  e.  x
) )
10 vex 2802 . . . . . . . . . 10  |-  y  e. 
_V
1110inex1 4217 . . . . . . . . 9  |-  ( y  i^i  B )  e. 
_V
12 eleq2 2293 . . . . . . . . 9  |-  ( x  =  ( y  i^i 
B )  ->  (
z  e.  x  <->  z  e.  ( y  i^i  B
) ) )
1311, 12ceqsexv 2839 . . . . . . . 8  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  z  e.  ( y  i^i  B
) )
14 elin 3387 . . . . . . . 8  |-  ( z  e.  ( y  i^i 
B )  <->  ( z  e.  y  /\  z  e.  B ) )
1513, 14bitri 184 . . . . . . 7  |-  ( E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( z  e.  y  /\  z  e.  B ) )
1615rexbii 2537 . . . . . 6  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  E. y  e.  A  ( z  e.  y  /\  z  e.  B ) )
17 r19.41v 2687 . . . . . 6  |-  ( E. y  e.  A  ( z  e.  y  /\  z  e.  B )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B )
)
1816, 17bitri 184 . . . . 5  |-  ( E. y  e.  A  E. x ( x  =  ( y  i^i  B
)  /\  z  e.  x )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
199, 18bitri 184 . . . 4  |-  ( E. x ( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B
) )  <->  ( E. y  e.  A  z  e.  y  /\  z  e.  B ) )
202, 3, 193bitr4i 212 . . 3  |-  ( z  e.  ( U. A  i^i  B )  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
21 eluniab 3899 . . 3  |-  ( z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }  <->  E. x
( z  e.  x  /\  E. y  e.  A  x  =  ( y  i^i  B ) ) )
2220, 21bitr4i 187 . 2  |-  ( z  e.  ( U. A  i^i  B )  <->  z  e.  U. { x  |  E. y  e.  A  x  =  ( y  i^i 
B ) } )
2322eqriv 2226 1  |-  ( U. A  i^i  B )  = 
U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509    i^i cin 3196   U.cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-in 3203  df-uni 3888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator