ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imauni Unicode version

Theorem imauni 5811
Description: The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imauni  |-  ( A
" U. B )  =  U_ x  e.  B  ( A "
x )
Distinct variable groups:    x, A    x, B

Proof of Theorem imauni
StepHypRef Expression
1 uniiun 3971 . . 3  |-  U. B  =  U_ x  e.  B  x
21imaeq2i 5008 . 2  |-  ( A
" U. B )  =  ( A " U_ x  e.  B  x )
3 imaiun 5810 . 2  |-  ( A
" U_ x  e.  B  x )  =  U_ x  e.  B  ( A " x )
42, 3eqtri 2217 1  |-  ( A
" U. B )  =  U_ x  e.  B  ( A "
x )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   U.cuni 3840   U_ciun 3917   "cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  tgcn  14528
  Copyright terms: Public domain W3C validator