ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniunfv Unicode version

Theorem fniunfv 5806
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Distinct variable groups:    x, A    x, F

Proof of Theorem fniunfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funfvex 5572 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
21funfni 5355 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
32ralrimiva 2567 . . 3  |-  ( F  Fn  A  ->  A. x  e.  A  ( F `  x )  e.  _V )
4 dfiun2g 3945 . . 3  |-  ( A. x  e.  A  ( F `  x )  e.  _V  ->  U_ x  e.  A  ( F `  x )  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
53, 4syl 14 . 2  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
6 fnrnfv 5604 . . 3  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
76unieqd 3847 . 2  |-  ( F  Fn  A  ->  U. ran  F  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
85, 7eqtr4d 2229 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760   U.cuni 3836   U_ciun 3913   ran crn 4661    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by:  funiunfvdm  5807  ennnfonelemfun  12577  ennnfonelemf1  12578
  Copyright terms: Public domain W3C validator