ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fniunfv Unicode version

Theorem fniunfv 5730
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Distinct variable groups:    x, A    x, F

Proof of Theorem fniunfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funfvex 5503 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
21funfni 5288 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
32ralrimiva 2539 . . 3  |-  ( F  Fn  A  ->  A. x  e.  A  ( F `  x )  e.  _V )
4 dfiun2g 3898 . . 3  |-  ( A. x  e.  A  ( F `  x )  e.  _V  ->  U_ x  e.  A  ( F `  x )  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
53, 4syl 14 . 2  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
6 fnrnfv 5533 . . 3  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
76unieqd 3800 . 2  |-  ( F  Fn  A  ->  U. ran  F  =  U. { y  |  E. x  e.  A  y  =  ( F `  x ) } )
85, 7eqtr4d 2201 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726   U.cuni 3789   U_ciun 3866   ran crn 4605    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  funiunfvdm  5731  ennnfonelemfun  12350  ennnfonelemf1  12351
  Copyright terms: Public domain W3C validator