| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 |
|
| Ref | Expression |
|---|---|
| rneqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 |
. 2
| |
| 2 | rneq 4924 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-cnv 4701 df-dm 4703 df-rn 4704 |
| This theorem is referenced by: rnmpt 4945 resima 5011 resima2 5012 mptima 5053 ima0 5060 rnuni 5113 imaundi 5114 imaundir 5115 inimass 5118 dminxp 5146 imainrect 5147 xpima1 5148 xpima2m 5149 rnresv 5161 imacnvcnv 5166 rnpropg 5181 imadmres 5194 mptpreima 5195 dmco 5210 resdif 5566 fpr 5789 fprg 5790 fliftfuns 5890 rnoprab 6051 rnmpo 6079 qliftfuns 6729 xpassen 6950 sbthlemi6 7090 ennnfonelemrn 12905 cnconst2 14820 elply2 15322 iedgedgg 15772 edgiedgbg 15776 edg0iedg0g 15777 uhgrvtxedgiedgb 15847 |
| Copyright terms: Public domain | W3C validator |