![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rneqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | rneq 4890 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: rnmpt 4911 resima 4976 resima2 4977 mptima 5018 ima0 5025 rnuni 5078 imaundi 5079 imaundir 5080 inimass 5083 dminxp 5111 imainrect 5112 xpima1 5113 xpima2m 5114 rnresv 5126 imacnvcnv 5131 rnpropg 5146 imadmres 5159 mptpreima 5160 dmco 5175 resdif 5523 fpr 5741 fprg 5742 fliftfuns 5842 rnoprab 6002 rnmpo 6030 qliftfuns 6675 xpassen 6886 sbthlemi6 7023 ennnfonelemrn 12579 cnconst2 14412 elply2 14914 |
Copyright terms: Public domain | W3C validator |