Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 |
Ref | Expression |
---|---|
rneqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 | . 2 | |
2 | rneq 4847 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 crn 4621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-cnv 4628 df-dm 4630 df-rn 4631 |
This theorem is referenced by: rnmpt 4868 resima 4933 resima2 4934 ima0 4980 rnuni 5032 imaundi 5033 imaundir 5034 inimass 5037 dminxp 5065 imainrect 5066 xpima1 5067 xpima2m 5068 rnresv 5080 imacnvcnv 5085 rnpropg 5100 imadmres 5113 mptpreima 5114 dmco 5129 resdif 5475 fpr 5690 fprg 5691 fliftfuns 5789 rnoprab 5948 rnmpo 5975 qliftfuns 6609 xpassen 6820 sbthlemi6 6951 ennnfonelemrn 12385 cnconst2 13284 |
Copyright terms: Public domain | W3C validator |