![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rneqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | rneq 4875 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3616 df-pr 3617 df-op 3619 df-br 4022 df-opab 4083 df-cnv 4655 df-dm 4657 df-rn 4658 |
This theorem is referenced by: rnmpt 4896 resima 4961 resima2 4962 ima0 5008 rnuni 5061 imaundi 5062 imaundir 5063 inimass 5066 dminxp 5094 imainrect 5095 xpima1 5096 xpima2m 5097 rnresv 5109 imacnvcnv 5114 rnpropg 5129 imadmres 5142 mptpreima 5143 dmco 5158 resdif 5505 fpr 5722 fprg 5723 fliftfuns 5823 rnoprab 5983 rnmpo 6011 qliftfuns 6649 xpassen 6860 sbthlemi6 6995 ennnfonelemrn 12481 cnconst2 14218 |
Copyright terms: Public domain | W3C validator |