| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 |
|
| Ref | Expression |
|---|---|
| rneqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 |
. 2
| |
| 2 | rneq 4906 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-cnv 4684 df-dm 4686 df-rn 4687 |
| This theorem is referenced by: rnmpt 4927 resima 4993 resima2 4994 mptima 5035 ima0 5042 rnuni 5095 imaundi 5096 imaundir 5097 inimass 5100 dminxp 5128 imainrect 5129 xpima1 5130 xpima2m 5131 rnresv 5143 imacnvcnv 5148 rnpropg 5163 imadmres 5176 mptpreima 5177 dmco 5192 resdif 5546 fpr 5768 fprg 5769 fliftfuns 5869 rnoprab 6030 rnmpo 6058 qliftfuns 6708 xpassen 6927 sbthlemi6 7066 ennnfonelemrn 12823 cnconst2 14738 elply2 15240 iedgedgg 15688 edgiedgbg 15692 edg0iedg0g 15693 |
| Copyright terms: Public domain | W3C validator |