![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rneqi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | rneq 4662 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-cnv 4446 df-dm 4448 df-rn 4449 |
This theorem is referenced by: rnmpt 4683 resima 4745 resima2 4746 ima0 4791 rnuni 4843 imaundi 4844 imaundir 4845 inimass 4848 dminxp 4875 imainrect 4876 xpima1 4877 xpima2m 4878 rnresv 4890 imacnvcnv 4895 rnpropg 4910 imadmres 4923 mptpreima 4924 dmco 4939 resdif 5275 fpr 5479 fprg 5480 fliftfuns 5577 rnoprab 5731 rnmpt2 5755 qliftfuns 6376 xpassen 6546 sbthlemi6 6671 |
Copyright terms: Public domain | W3C validator |