| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 |
|
| Ref | Expression |
|---|---|
| rneqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 |
. 2
| |
| 2 | rneq 4951 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-cnv 4727 df-dm 4729 df-rn 4730 |
| This theorem is referenced by: rnmpt 4972 resima 5038 resima2 5039 mptima 5080 ima0 5087 rnuni 5140 imaundi 5141 imaundir 5142 inimass 5145 dminxp 5173 imainrect 5174 xpima1 5175 xpima2m 5176 rnresv 5188 imacnvcnv 5193 rnpropg 5208 imadmres 5221 mptpreima 5222 dmco 5237 resdif 5594 fpr 5821 fprg 5822 fliftfuns 5922 rnoprab 6087 rnmpo 6115 qliftfuns 6766 xpassen 6989 sbthlemi6 7129 ennnfonelemrn 12990 cnconst2 14907 elply2 15409 iedgedgg 15861 edgiedgbg 15865 edg0iedg0g 15866 uhgrvtxedgiedgb 15941 uspgrf1oedg 15974 usgrf1oedg 16003 usgredg3 16012 ushgredgedg 16024 ushgredgedgloop 16026 edginwlkd 16066 |
| Copyright terms: Public domain | W3C validator |