| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rneqi | Unicode version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) | 
| Ref | Expression | 
|---|---|
| rneqi.1 | 
 | 
| Ref | Expression | 
|---|---|
| rneqi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rneqi.1 | 
. 2
 | |
| 2 | rneq 4893 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 | 
| This theorem is referenced by: rnmpt 4914 resima 4979 resima2 4980 mptima 5021 ima0 5028 rnuni 5081 imaundi 5082 imaundir 5083 inimass 5086 dminxp 5114 imainrect 5115 xpima1 5116 xpima2m 5117 rnresv 5129 imacnvcnv 5134 rnpropg 5149 imadmres 5162 mptpreima 5163 dmco 5178 resdif 5526 fpr 5744 fprg 5745 fliftfuns 5845 rnoprab 6005 rnmpo 6033 qliftfuns 6678 xpassen 6889 sbthlemi6 7028 ennnfonelemrn 12636 cnconst2 14469 elply2 14971 | 
| Copyright terms: Public domain | W3C validator |