ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainss Unicode version

Theorem imainss 5144
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )

Proof of Theorem imainss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . . . . . . 11  |-  y  e. 
_V
2 vex 2802 . . . . . . . . . . 11  |-  x  e. 
_V
31, 2brcnv 4905 . . . . . . . . . 10  |-  ( y `' R x  <->  x R
y )
4 19.8a 1636 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  y `' R x )  ->  E. y ( y  e.  B  /\  y `' R x ) )
53, 4sylan2br 288 . . . . . . . . 9  |-  ( ( y  e.  B  /\  x R y )  ->  E. y ( y  e.  B  /\  y `' R x ) )
65ancoms 268 . . . . . . . 8  |-  ( ( x R y  /\  y  e.  B )  ->  E. y ( y  e.  B  /\  y `' R x ) )
76anim2i 342 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
8 simprl 529 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  x R y )
97, 8jca 306 . . . . . 6  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
109anassrs 400 . . . . 5  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
11 elin 3387 . . . . . . 7  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  x  e.  ( `' R " B ) ) )
122elima2 5074 . . . . . . . 8  |-  ( x  e.  ( `' R " B )  <->  E. y
( y  e.  B  /\  y `' R x ) )
1312anbi2i 457 . . . . . . 7  |-  ( ( x  e.  A  /\  x  e.  ( `' R " B ) )  <-> 
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
1411, 13bitri 184 . . . . . 6  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  y `' R x ) ) )
1514anbi1i 458 . . . . 5  |-  ( ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y )  <->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
1610, 15sylibr 134 . . . 4  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
1716eximi 1646 . . 3  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  ->  E. x ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
181elima2 5074 . . . . 5  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
1918anbi1i 458 . . . 4  |-  ( ( y  e.  ( R
" A )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
20 elin 3387 . . . 4  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  ( y  e.  ( R " A
)  /\  y  e.  B ) )
21 19.41v 1949 . . . 4  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
2219, 20, 213bitr4i 212 . . 3  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  E. x
( ( x  e.  A  /\  x R y )  /\  y  e.  B ) )
231elima2 5074 . . 3  |-  ( y  e.  ( R "
( A  i^i  ( `' R " B ) ) )  <->  E. x
( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
2417, 22, 233imtr4i 201 . 2  |-  ( y  e.  ( ( R
" A )  i^i 
B )  ->  y  e.  ( R " ( A  i^i  ( `' R " B ) ) ) )
2524ssriv 3228 1  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1538    e. wcel 2200    i^i cin 3196    C_ wss 3197   class class class wbr 4083   `'ccnv 4718   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator