Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imainss | Unicode version |
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
imainss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . . . . . . 11 | |
2 | vex 2729 | . . . . . . . . . . 11 | |
3 | 1, 2 | brcnv 4787 | . . . . . . . . . 10 |
4 | 19.8a 1578 | . . . . . . . . . 10 | |
5 | 3, 4 | sylan2br 286 | . . . . . . . . 9 |
6 | 5 | ancoms 266 | . . . . . . . 8 |
7 | 6 | anim2i 340 | . . . . . . 7 |
8 | simprl 521 | . . . . . . 7 | |
9 | 7, 8 | jca 304 | . . . . . 6 |
10 | 9 | anassrs 398 | . . . . 5 |
11 | elin 3305 | . . . . . . 7 | |
12 | 2 | elima2 4952 | . . . . . . . 8 |
13 | 12 | anbi2i 453 | . . . . . . 7 |
14 | 11, 13 | bitri 183 | . . . . . 6 |
15 | 14 | anbi1i 454 | . . . . 5 |
16 | 10, 15 | sylibr 133 | . . . 4 |
17 | 16 | eximi 1588 | . . 3 |
18 | 1 | elima2 4952 | . . . . 5 |
19 | 18 | anbi1i 454 | . . . 4 |
20 | elin 3305 | . . . 4 | |
21 | 19.41v 1890 | . . . 4 | |
22 | 19, 20, 21 | 3bitr4i 211 | . . 3 |
23 | 1 | elima2 4952 | . . 3 |
24 | 17, 22, 23 | 3imtr4i 200 | . 2 |
25 | 24 | ssriv 3146 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wex 1480 wcel 2136 cin 3115 wss 3116 class class class wbr 3982 ccnv 4603 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |