| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imainss | Unicode version | ||
| Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.) |
| Ref | Expression |
|---|---|
| imainss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . . . . . . . 11
| |
| 2 | vex 2766 |
. . . . . . . . . . 11
| |
| 3 | 1, 2 | brcnv 4849 |
. . . . . . . . . 10
|
| 4 | 19.8a 1604 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | sylan2br 288 |
. . . . . . . . 9
|
| 6 | 5 | ancoms 268 |
. . . . . . . 8
|
| 7 | 6 | anim2i 342 |
. . . . . . 7
|
| 8 | simprl 529 |
. . . . . . 7
| |
| 9 | 7, 8 | jca 306 |
. . . . . 6
|
| 10 | 9 | anassrs 400 |
. . . . 5
|
| 11 | elin 3346 |
. . . . . . 7
| |
| 12 | 2 | elima2 5015 |
. . . . . . . 8
|
| 13 | 12 | anbi2i 457 |
. . . . . . 7
|
| 14 | 11, 13 | bitri 184 |
. . . . . 6
|
| 15 | 14 | anbi1i 458 |
. . . . 5
|
| 16 | 10, 15 | sylibr 134 |
. . . 4
|
| 17 | 16 | eximi 1614 |
. . 3
|
| 18 | 1 | elima2 5015 |
. . . . 5
|
| 19 | 18 | anbi1i 458 |
. . . 4
|
| 20 | elin 3346 |
. . . 4
| |
| 21 | 19.41v 1917 |
. . . 4
| |
| 22 | 19, 20, 21 | 3bitr4i 212 |
. . 3
|
| 23 | 1 | elima2 5015 |
. . 3
|
| 24 | 17, 22, 23 | 3imtr4i 201 |
. 2
|
| 25 | 24 | ssriv 3187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |