ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainss Unicode version

Theorem imainss 5026
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )

Proof of Theorem imainss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . . . . . . 11  |-  y  e. 
_V
2 vex 2733 . . . . . . . . . . 11  |-  x  e. 
_V
31, 2brcnv 4794 . . . . . . . . . 10  |-  ( y `' R x  <->  x R
y )
4 19.8a 1583 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  y `' R x )  ->  E. y ( y  e.  B  /\  y `' R x ) )
53, 4sylan2br 286 . . . . . . . . 9  |-  ( ( y  e.  B  /\  x R y )  ->  E. y ( y  e.  B  /\  y `' R x ) )
65ancoms 266 . . . . . . . 8  |-  ( ( x R y  /\  y  e.  B )  ->  E. y ( y  e.  B  /\  y `' R x ) )
76anim2i 340 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
8 simprl 526 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  x R y )
97, 8jca 304 . . . . . 6  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
109anassrs 398 . . . . 5  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
11 elin 3310 . . . . . . 7  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  x  e.  ( `' R " B ) ) )
122elima2 4959 . . . . . . . 8  |-  ( x  e.  ( `' R " B )  <->  E. y
( y  e.  B  /\  y `' R x ) )
1312anbi2i 454 . . . . . . 7  |-  ( ( x  e.  A  /\  x  e.  ( `' R " B ) )  <-> 
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
1411, 13bitri 183 . . . . . 6  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  y `' R x ) ) )
1514anbi1i 455 . . . . 5  |-  ( ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y )  <->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
1610, 15sylibr 133 . . . 4  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
1716eximi 1593 . . 3  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  ->  E. x ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
181elima2 4959 . . . . 5  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
1918anbi1i 455 . . . 4  |-  ( ( y  e.  ( R
" A )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
20 elin 3310 . . . 4  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  ( y  e.  ( R " A
)  /\  y  e.  B ) )
21 19.41v 1895 . . . 4  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
2219, 20, 213bitr4i 211 . . 3  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  E. x
( ( x  e.  A  /\  x R y )  /\  y  e.  B ) )
231elima2 4959 . . 3  |-  ( y  e.  ( R "
( A  i^i  ( `' R " B ) ) )  <->  E. x
( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
2417, 22, 233imtr4i 200 . 2  |-  ( y  e.  ( ( R
" A )  i^i 
B )  ->  y  e.  ( R " ( A  i^i  ( `' R " B ) ) ) )
2524ssriv 3151 1  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1485    e. wcel 2141    i^i cin 3120    C_ wss 3121   class class class wbr 3989   `'ccnv 4610   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator