ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval2 Unicode version

Theorem fzval2 10103
Description: An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )

Proof of Theorem fzval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzval 10102 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
2 zssre 9350 . . . . . . 7  |-  ZZ  C_  RR
3 ressxr 8087 . . . . . . 7  |-  RR  C_  RR*
42, 3sstri 3193 . . . . . 6  |-  ZZ  C_  RR*
54sseli 3180 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  RR* )
64sseli 3180 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR* )
7 iccval 10012 . . . . 5  |-  ( ( M  e.  RR*  /\  N  e.  RR* )  ->  ( M [,] N )  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
85, 6, 7syl2an 289 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M [,] N
)  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
98ineq1d 3364 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M [,] N )  i^i  ZZ )  =  ( {
k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ ) )
10 inrab2 3437 . . . 4  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  (
RR*  i^i  ZZ )  |  ( M  <_ 
k  /\  k  <_  N ) }
11 sseqin2 3383 . . . . . 6  |-  ( ZZ  C_  RR*  <->  ( RR*  i^i  ZZ )  =  ZZ )
124, 11mpbi 145 . . . . 5  |-  ( RR*  i^i 
ZZ )  =  ZZ
13 rabeq 2755 . . . . 5  |-  ( (
RR*  i^i  ZZ )  =  ZZ  ->  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) } )
1412, 13ax-mp 5 . . . 4  |-  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
1510, 14eqtri 2217 . . 3  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
169, 15eqtr2di 2246 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }  =  ( ( M [,] N
)  i^i  ZZ )
)
171, 16eqtrd 2229 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {crab 2479    i^i cin 3156    C_ wss 3157   class class class wbr 4034  (class class class)co 5925   RRcr 7895   RR*cxr 8077    <_ cle 8079   ZZcz 9343   [,]cicc 9983   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-neg 8217  df-z 9344  df-icc 9987  df-fz 10101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator