ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdenle Unicode version

Theorem divdenle 12390
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divdenle  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  <_  B )

Proof of Theorem divdenle
StepHypRef Expression
1 divnumden 12389 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )
21simprd 114 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  =  ( B  /  ( A  gcd  B ) ) )
3 simpl 109 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  ZZ )
4 nnz 9362 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  ZZ )
54adantl 277 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
6 nnne0 9035 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  =/=  0 )
76neneqd 2388 . . . . . . . 8  |-  ( B  e.  NN  ->  -.  B  =  0 )
87adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  B  =  0 )
98intnand 932 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
10 gcdn0cl 12154 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
113, 5, 9, 10syl21anc 1248 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
1211nnge1d 9050 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  1  <_  ( A  gcd  B ) )
13 1red 8058 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  1  e.  RR )
14 0lt1 8170 . . . . . 6  |-  0  <  1
1514a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  1 )
1611nnred 9020 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  RR )
1711nngt0d 9051 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  ( A  gcd  B ) )
18 nnre 9014 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  RR )
1918adantl 277 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  RR )
20 nngt0 9032 . . . . . 6  |-  ( B  e.  NN  ->  0  <  B )
2120adantl 277 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  B )
22 lediv2 8935 . . . . 5  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( A  gcd  B )  e.  RR  /\  0  < 
( A  gcd  B
) )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( 1  <_  ( A  gcd  B )  <->  ( B  /  ( A  gcd  B ) )  <_  ( B  /  1 ) ) )
2313, 15, 16, 17, 19, 21, 22syl222anc 1265 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( 1  <_  ( A  gcd  B )  <->  ( B  /  ( A  gcd  B ) )  <_  ( B  /  1 ) ) )
2412, 23mpbid 147 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  <_  ( B  / 
1 ) )
25 nncn 9015 . . . . 5  |-  ( B  e.  NN  ->  B  e.  CC )
2625adantl 277 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  CC )
2726div1d 8824 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  1
)  =  B )
2824, 27breqtrd 4060 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  <_  B )
292, 28eqbrtrd 4056 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    < clt 8078    <_ cle 8079    / cdiv 8716   NNcn 9007   ZZcz 9343    gcd cgcd 12145  numercnumer 12374  denomcdenom 12375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-numer 12376  df-denom 12377
This theorem is referenced by:  qden1elz  12398
  Copyright terms: Public domain W3C validator