| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemdisj | Unicode version | ||
| Description: Lemma for ivthinc 14963. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivth.9 |
|
| ivthinc.i |
|
| ivthinclem.l |
|
| ivthinclem.r |
|
| Ref | Expression |
|---|---|
| ivthinclemdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5561 |
. . . . . . . 8
| |
| 2 | 1 | eleq1d 2265 |
. . . . . . 7
|
| 3 | ivth.8 |
. . . . . . . . 9
| |
| 4 | 3 | ralrimiva 2570 |
. . . . . . . 8
|
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 7 | 6 | breq1d 4044 |
. . . . . . . . . . 11
|
| 8 | ivthinclem.l |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | elrab2 2923 |
. . . . . . . . . 10
|
| 10 | 9 | biimpi 120 |
. . . . . . . . 9
|
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | 11 | simpld 112 |
. . . . . . 7
|
| 13 | 2, 5, 12 | rspcdva 2873 |
. . . . . 6
|
| 14 | ivth.3 |
. . . . . . 7
| |
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | 11 | simprd 114 |
. . . . . 6
|
| 17 | 13, 15, 16 | ltnsymd 8163 |
. . . . 5
|
| 18 | 17 | intnand 932 |
. . . 4
|
| 19 | 6 | breq2d 4046 |
. . . . 5
|
| 20 | ivthinclem.r |
. . . . 5
| |
| 21 | 19, 20 | elrab2 2923 |
. . . 4
|
| 22 | 18, 21 | sylnibr 678 |
. . 3
|
| 23 | 22 | ralrimiva 2570 |
. 2
|
| 24 | disj 3500 |
. 2
| |
| 25 | 23, 24 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: ivthinclemex 14962 |
| Copyright terms: Public domain | W3C validator |