| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemdisj | Unicode version | ||
| Description: Lemma for ivthinc 15115. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivth.9 |
|
| ivthinc.i |
|
| ivthinclem.l |
|
| ivthinclem.r |
|
| Ref | Expression |
|---|---|
| ivthinclemdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5576 |
. . . . . . . 8
| |
| 2 | 1 | eleq1d 2274 |
. . . . . . 7
|
| 3 | ivth.8 |
. . . . . . . . 9
| |
| 4 | 3 | ralrimiva 2579 |
. . . . . . . 8
|
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 7 | 6 | breq1d 4054 |
. . . . . . . . . . 11
|
| 8 | ivthinclem.l |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | elrab2 2932 |
. . . . . . . . . 10
|
| 10 | 9 | biimpi 120 |
. . . . . . . . 9
|
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | 11 | simpld 112 |
. . . . . . 7
|
| 13 | 2, 5, 12 | rspcdva 2882 |
. . . . . 6
|
| 14 | ivth.3 |
. . . . . . 7
| |
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | 11 | simprd 114 |
. . . . . 6
|
| 17 | 13, 15, 16 | ltnsymd 8192 |
. . . . 5
|
| 18 | 17 | intnand 933 |
. . . 4
|
| 19 | 6 | breq2d 4056 |
. . . . 5
|
| 20 | ivthinclem.r |
. . . . 5
| |
| 21 | 19, 20 | elrab2 2932 |
. . . 4
|
| 22 | 18, 21 | sylnibr 679 |
. . 3
|
| 23 | 22 | ralrimiva 2579 |
. 2
|
| 24 | disj 3509 |
. 2
| |
| 25 | 23, 24 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-lttrn 8039 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: ivthinclemex 15114 |
| Copyright terms: Public domain | W3C validator |