Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intprg GIF version

Theorem intprg 3810
 Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3809. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem intprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3606 . . . 4 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
21inteqd 3782 . . 3 (𝑥 = 𝐴 {𝑥, 𝑦} = {𝐴, 𝑦})
3 ineq1 3273 . . 3 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
42, 3eqeq12d 2155 . 2 (𝑥 = 𝐴 → ( {𝑥, 𝑦} = (𝑥𝑦) ↔ {𝐴, 𝑦} = (𝐴𝑦)))
5 preq2 3607 . . . 4 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
65inteqd 3782 . . 3 (𝑦 = 𝐵 {𝐴, 𝑦} = {𝐴, 𝐵})
7 ineq2 3274 . . 3 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
86, 7eqeq12d 2155 . 2 (𝑦 = 𝐵 → ( {𝐴, 𝑦} = (𝐴𝑦) ↔ {𝐴, 𝐵} = (𝐴𝐵)))
9 vex 2692 . . 3 𝑥 ∈ V
10 vex 2692 . . 3 𝑦 ∈ V
119, 10intpr 3809 . 2 {𝑥, 𝑦} = (𝑥𝑦)
124, 8, 11vtocl2g 2753 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481   ∩ cin 3073  {cpr 3531  ∩ cint 3777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3078  df-in 3080  df-sn 3536  df-pr 3537  df-int 3778 This theorem is referenced by:  intsng  3811  op1stbg  4406
 Copyright terms: Public domain W3C validator