ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intprg GIF version

Theorem intprg 3864
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3863. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem intprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3660 . . . 4 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
21inteqd 3836 . . 3 (𝑥 = 𝐴 {𝑥, 𝑦} = {𝐴, 𝑦})
3 ineq1 3321 . . 3 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
42, 3eqeq12d 2185 . 2 (𝑥 = 𝐴 → ( {𝑥, 𝑦} = (𝑥𝑦) ↔ {𝐴, 𝑦} = (𝐴𝑦)))
5 preq2 3661 . . . 4 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
65inteqd 3836 . . 3 (𝑦 = 𝐵 {𝐴, 𝑦} = {𝐴, 𝐵})
7 ineq2 3322 . . 3 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
86, 7eqeq12d 2185 . 2 (𝑦 = 𝐵 → ( {𝐴, 𝑦} = (𝐴𝑦) ↔ {𝐴, 𝐵} = (𝐴𝐵)))
9 vex 2733 . . 3 𝑥 ∈ V
10 vex 2733 . . 3 𝑦 ∈ V
119, 10intpr 3863 . 2 {𝑥, 𝑦} = (𝑥𝑦)
124, 8, 11vtocl2g 2794 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cin 3120  {cpr 3584   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-sn 3589  df-pr 3590  df-int 3832
This theorem is referenced by:  intsng  3865  op1stbg  4464
  Copyright terms: Public domain W3C validator