| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intprg | GIF version | ||
| Description: The intersection of a pair is the intersection of its members. Closed form of intpr 3919. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) |
| Ref | Expression |
|---|---|
| intprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3711 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
| 2 | 1 | inteqd 3892 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑥, 𝑦} = ∩ {𝐴, 𝑦}) |
| 3 | ineq1 3368 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝑦)) | |
| 4 | 2, 3 | eqeq12d 2221 | . 2 ⊢ (𝑥 = 𝐴 → (∩ {𝑥, 𝑦} = (𝑥 ∩ 𝑦) ↔ ∩ {𝐴, 𝑦} = (𝐴 ∩ 𝑦))) |
| 5 | preq2 3712 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
| 6 | 5 | inteqd 3892 | . . 3 ⊢ (𝑦 = 𝐵 → ∩ {𝐴, 𝑦} = ∩ {𝐴, 𝐵}) |
| 7 | ineq2 3369 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∩ 𝑦) = (𝐴 ∩ 𝐵)) | |
| 8 | 6, 7 | eqeq12d 2221 | . 2 ⊢ (𝑦 = 𝐵 → (∩ {𝐴, 𝑦} = (𝐴 ∩ 𝑦) ↔ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵))) |
| 9 | vex 2776 | . . 3 ⊢ 𝑥 ∈ V | |
| 10 | vex 2776 | . . 3 ⊢ 𝑦 ∈ V | |
| 11 | 9, 10 | intpr 3919 | . 2 ⊢ ∩ {𝑥, 𝑦} = (𝑥 ∩ 𝑦) |
| 12 | 4, 8, 11 | vtocl2g 2838 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∩ cin 3166 {cpr 3635 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3171 df-in 3173 df-sn 3640 df-pr 3641 df-int 3888 |
| This theorem is referenced by: intsng 3921 op1stbg 4530 subrngin 14019 subrgin 14050 lssincl 14191 |
| Copyright terms: Public domain | W3C validator |