| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcdiv | Unicode version | ||
| Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcdiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . 3
| |
| 2 | simp2l 1047 |
. . . 4
| |
| 3 | simp3 1023 |
. . . 4
| |
| 4 | znq 9819 |
. . . 4
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . 3
|
| 6 | 2 | zcnd 9570 |
. . . . 5
|
| 7 | 3 | nncnd 9124 |
. . . . 5
|
| 8 | simp2r 1048 |
. . . . . 6
| |
| 9 | 0z 9457 |
. . . . . . 7
| |
| 10 | zapne 9521 |
. . . . . . 7
| |
| 11 | 2, 9, 10 | sylancl 413 |
. . . . . 6
|
| 12 | 8, 11 | mpbird 167 |
. . . . 5
|
| 13 | 3 | nnap0d 9156 |
. . . . 5
|
| 14 | 6, 7, 12, 13 | divap0d 8953 |
. . . 4
|
| 15 | zq 9821 |
. . . . . 6
| |
| 16 | 9, 15 | ax-mp 5 |
. . . . 5
|
| 17 | qapne 9834 |
. . . . 5
| |
| 18 | 5, 16, 17 | sylancl 413 |
. . . 4
|
| 19 | 14, 18 | mpbid 147 |
. . 3
|
| 20 | eqid 2229 |
. . . 4
| |
| 21 | eqid 2229 |
. . . 4
| |
| 22 | 20, 21 | pcval 12819 |
. . 3
|
| 23 | 1, 5, 19, 22 | syl12anc 1269 |
. 2
|
| 24 | eqid 2229 |
. . . . . . . 8
| |
| 25 | 24 | pczpre 12820 |
. . . . . . 7
|
| 26 | 25 | 3adant3 1041 |
. . . . . 6
|
| 27 | nnz 9465 |
. . . . . . . . 9
| |
| 28 | nnne0 9138 |
. . . . . . . . 9
| |
| 29 | 27, 28 | jca 306 |
. . . . . . . 8
|
| 30 | eqid 2229 |
. . . . . . . . 9
| |
| 31 | 30 | pczpre 12820 |
. . . . . . . 8
|
| 32 | 29, 31 | sylan2 286 |
. . . . . . 7
|
| 33 | 32 | 3adant2 1040 |
. . . . . 6
|
| 34 | 26, 33 | oveq12d 6019 |
. . . . 5
|
| 35 | eqid 2229 |
. . . . 5
| |
| 36 | 34, 35 | jctil 312 |
. . . 4
|
| 37 | oveq1 6008 |
. . . . . . 7
| |
| 38 | 37 | eqeq2d 2241 |
. . . . . 6
|
| 39 | breq2 4087 |
. . . . . . . . . 10
| |
| 40 | 39 | rabbidv 2788 |
. . . . . . . . 9
|
| 41 | 40 | supeq1d 7154 |
. . . . . . . 8
|
| 42 | 41 | oveq1d 6016 |
. . . . . . 7
|
| 43 | 42 | eqeq2d 2241 |
. . . . . 6
|
| 44 | 38, 43 | anbi12d 473 |
. . . . 5
|
| 45 | oveq2 6009 |
. . . . . . 7
| |
| 46 | 45 | eqeq2d 2241 |
. . . . . 6
|
| 47 | breq2 4087 |
. . . . . . . . . 10
| |
| 48 | 47 | rabbidv 2788 |
. . . . . . . . 9
|
| 49 | 48 | supeq1d 7154 |
. . . . . . . 8
|
| 50 | 49 | oveq2d 6017 |
. . . . . . 7
|
| 51 | 50 | eqeq2d 2241 |
. . . . . 6
|
| 52 | 46, 51 | anbi12d 473 |
. . . . 5
|
| 53 | 44, 52 | rspc2ev 2922 |
. . . 4
|
| 54 | 2, 3, 36, 53 | syl3anc 1271 |
. . 3
|
| 55 | pczcl 12821 |
. . . . . . 7
| |
| 56 | 55 | 3adant3 1041 |
. . . . . 6
|
| 57 | 56 | nn0zd 9567 |
. . . . 5
|
| 58 | 1, 3 | pccld 12823 |
. . . . . 6
|
| 59 | 58 | nn0zd 9567 |
. . . . 5
|
| 60 | 57, 59 | zsubcld 9574 |
. . . 4
|
| 61 | 20, 21 | pceu 12818 |
. . . . 5
|
| 62 | 1, 5, 19, 61 | syl12anc 1269 |
. . . 4
|
| 63 | eqeq1 2236 |
. . . . . . 7
| |
| 64 | 63 | anbi2d 464 |
. . . . . 6
|
| 65 | 64 | 2rexbidv 2555 |
. . . . 5
|
| 66 | 65 | iota2 5308 |
. . . 4
|
| 67 | 60, 62, 66 | syl2anc 411 |
. . 3
|
| 68 | 54, 67 | mpbid 147 |
. 2
|
| 69 | 23, 68 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-2o 6563 df-er 6680 df-en 6888 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-fl 10490 df-mod 10545 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-dvds 12299 df-gcd 12475 df-prm 12630 df-pc 12808 |
| This theorem is referenced by: pcqmul 12826 pcqcl 12829 pcid 12847 pcneg 12848 pc2dvds 12853 pcz 12855 pcaddlem 12862 pcadd 12863 pcmpt2 12867 pcbc 12874 |
| Copyright terms: Public domain | W3C validator |