ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdiv Unicode version

Theorem pcdiv 12285
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
Assertion
Ref Expression
pcdiv  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  ( A  /  B ) )  =  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) ) )

Proof of Theorem pcdiv
Dummy variables  x  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 997 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  P  e.  Prime )
2 simp2l 1023 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A  e.  ZZ )
3 simp3 999 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  B  e.  NN )
4 znq 9613 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
52, 3, 4syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A  /  B )  e.  QQ )
62zcnd 9365 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A  e.  CC )
73nncnd 8922 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  B  e.  CC )
8 simp2r 1024 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A  =/=  0 )
9 0z 9253 . . . . . . 7  |-  0  e.  ZZ
10 zapne 9316 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A #  0  <->  A  =/=  0 ) )
112, 9, 10sylancl 413 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A #  0  <->  A  =/=  0
) )
128, 11mpbird 167 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A #  0 )
133nnap0d 8954 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  B #  0 )
146, 7, 12, 13divap0d 8752 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A  /  B ) #  0 )
15 zq 9615 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
169, 15ax-mp 5 . . . . 5  |-  0  e.  QQ
17 qapne 9628 . . . . 5  |-  ( ( ( A  /  B
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
185, 16, 17sylancl 413 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( A  /  B
) #  0  <->  ( A  /  B )  =/=  0
) )
1914, 18mpbid 147 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A  /  B )  =/=  0 )
20 eqid 2177 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
21 eqid 2177 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
2220, 21pcval 12279 . . 3  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  /  B
) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
231, 5, 19, 22syl12anc 1236 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  ( A  /  B ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )
24 eqid 2177 . . . . . . . 8  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )
2524pczpre 12280 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
26253adant3 1017 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  A )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  ) )
27 nnz 9261 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  ZZ )
28 nnne0 8936 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  =/=  0 )
2927, 28jca 306 . . . . . . . 8  |-  ( B  e.  NN  ->  ( B  e.  ZZ  /\  B  =/=  0 ) )
30 eqid 2177 . . . . . . . . 9  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  )
3130pczpre 12280 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
3229, 31sylan2 286 . . . . . . 7  |-  ( ( P  e.  Prime  /\  B  e.  NN )  ->  ( P  pCnt  B )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )
33323adant2 1016 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  B )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )
3426, 33oveq12d 5887 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( P  pCnt  A
)  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) )
35 eqid 2177 . . . . 5  |-  ( A  /  B )  =  ( A  /  B
)
3634, 35jctil 312 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( A  /  B
)  =  ( A  /  B )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) ) )
37 oveq1 5876 . . . . . . 7  |-  ( x  =  A  ->  (
x  /  y )  =  ( A  / 
y ) )
3837eqeq2d 2189 . . . . . 6  |-  ( x  =  A  ->  (
( A  /  B
)  =  ( x  /  y )  <->  ( A  /  B )  =  ( A  /  y ) ) )
39 breq2 4004 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  A ) )
4039rabbidv 2726 . . . . . . . . 9  |-  ( x  =  A  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  A }
)
4140supeq1d 6980 . . . . . . . 8  |-  ( x  =  A  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  ) )
4241oveq1d 5884 . . . . . . 7  |-  ( x  =  A  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )
4342eqeq2d 2189 . . . . . 6  |-  ( x  =  A  ->  (
( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
4438, 43anbi12d 473 . . . . 5  |-  ( x  =  A  ->  (
( ( A  /  B )  =  ( x  /  y )  /\  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( ( A  /  B )  =  ( A  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
45 oveq2 5877 . . . . . . 7  |-  ( y  =  B  ->  ( A  /  y )  =  ( A  /  B
) )
4645eqeq2d 2189 . . . . . 6  |-  ( y  =  B  ->  (
( A  /  B
)  =  ( A  /  y )  <->  ( A  /  B )  =  ( A  /  B ) ) )
47 breq2 4004 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  B ) )
4847rabbidv 2726 . . . . . . . . 9  |-  ( y  =  B  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  B }
)
4948supeq1d 6980 . . . . . . . 8  |-  ( y  =  B  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )
5049oveq2d 5885 . . . . . . 7  |-  ( y  =  B  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
) )
5150eqeq2d 2189 . . . . . 6  |-  ( y  =  B  ->  (
( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
) ) )
5246, 51anbi12d 473 . . . . 5  |-  ( y  =  B  ->  (
( ( A  /  B )  =  ( A  /  y )  /\  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( ( A  /  B )  =  ( A  /  B
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
) ) ) )
5344, 52rspc2ev 2856 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN  /\  (
( A  /  B
)  =  ( A  /  B )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
542, 3, 36, 53syl3anc 1238 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
55 pczcl 12281 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
56553adant3 1017 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  A )  e. 
NN0 )
5756nn0zd 9362 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  A )  e.  ZZ )
581, 3pccld 12283 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  B )  e. 
NN0 )
5958nn0zd 9362 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  B )  e.  ZZ )
6057, 59zsubcld 9369 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( P  pCnt  A
)  -  ( P 
pCnt  B ) )  e.  ZZ )
6120, 21pceu 12278 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
621, 5, 19, 61syl12anc 1236 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
63 eqeq1 2184 . . . . . . 7  |-  ( z  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  ->  ( z  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
6463anbi2d 464 . . . . . 6  |-  ( z  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  ->  ( ( ( A  /  B )  =  ( x  / 
y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
65642rexbidv 2502 . . . . 5  |-  ( z  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
6665iota2 5202 . . . 4  |-  ( ( ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  e.  ZZ  /\  E! z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) ) )
6760, 62, 66syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) ) )
6854, 67mpbid 147 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )  =  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) ) )
6923, 68eqtrd 2210 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  ( A  /  B ) )  =  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E!weu 2026    e. wcel 2148    =/= wne 2347   E.wrex 2456   {crab 2459   class class class wbr 4000   iotacio 5172  (class class class)co 5869   supcsup 6975   RRcr 7801   0cc0 7802    < clt 7982    - cmin 8118   # cap 8528    / cdiv 8618   NNcn 8908   NN0cn0 9165   ZZcz 9242   QQcq 9608   ^cexp 10505    || cdvds 11778   Primecprime 12090    pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by:  pcqmul  12286  pcqcl  12289  pcid  12306  pcneg  12307  pc2dvds  12312  pcz  12314  pcaddlem  12321  pcadd  12322  pcmpt2  12325  pcbc  12332
  Copyright terms: Public domain W3C validator