Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcdiv | Unicode version |
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.) |
Ref | Expression |
---|---|
pcdiv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . 3 | |
2 | simp2l 1018 | . . . 4 | |
3 | simp3 994 | . . . 4 | |
4 | znq 9570 | . . . 4 | |
5 | 2, 3, 4 | syl2anc 409 | . . 3 |
6 | 2 | zcnd 9322 | . . . . 5 |
7 | 3 | nncnd 8879 | . . . . 5 |
8 | simp2r 1019 | . . . . . 6 | |
9 | 0z 9210 | . . . . . . 7 | |
10 | zapne 9273 | . . . . . . 7 # | |
11 | 2, 9, 10 | sylancl 411 | . . . . . 6 # |
12 | 8, 11 | mpbird 166 | . . . . 5 # |
13 | 3 | nnap0d 8911 | . . . . 5 # |
14 | 6, 7, 12, 13 | divap0d 8710 | . . . 4 # |
15 | zq 9572 | . . . . . 6 | |
16 | 9, 15 | ax-mp 5 | . . . . 5 |
17 | qapne 9585 | . . . . 5 # | |
18 | 5, 16, 17 | sylancl 411 | . . . 4 # |
19 | 14, 18 | mpbid 146 | . . 3 |
20 | eqid 2170 | . . . 4 | |
21 | eqid 2170 | . . . 4 | |
22 | 20, 21 | pcval 12237 | . . 3 |
23 | 1, 5, 19, 22 | syl12anc 1231 | . 2 |
24 | eqid 2170 | . . . . . . . 8 | |
25 | 24 | pczpre 12238 | . . . . . . 7 |
26 | 25 | 3adant3 1012 | . . . . . 6 |
27 | nnz 9218 | . . . . . . . . 9 | |
28 | nnne0 8893 | . . . . . . . . 9 | |
29 | 27, 28 | jca 304 | . . . . . . . 8 |
30 | eqid 2170 | . . . . . . . . 9 | |
31 | 30 | pczpre 12238 | . . . . . . . 8 |
32 | 29, 31 | sylan2 284 | . . . . . . 7 |
33 | 32 | 3adant2 1011 | . . . . . 6 |
34 | 26, 33 | oveq12d 5868 | . . . . 5 |
35 | eqid 2170 | . . . . 5 | |
36 | 34, 35 | jctil 310 | . . . 4 |
37 | oveq1 5857 | . . . . . . 7 | |
38 | 37 | eqeq2d 2182 | . . . . . 6 |
39 | breq2 3991 | . . . . . . . . . 10 | |
40 | 39 | rabbidv 2719 | . . . . . . . . 9 |
41 | 40 | supeq1d 6960 | . . . . . . . 8 |
42 | 41 | oveq1d 5865 | . . . . . . 7 |
43 | 42 | eqeq2d 2182 | . . . . . 6 |
44 | 38, 43 | anbi12d 470 | . . . . 5 |
45 | oveq2 5858 | . . . . . . 7 | |
46 | 45 | eqeq2d 2182 | . . . . . 6 |
47 | breq2 3991 | . . . . . . . . . 10 | |
48 | 47 | rabbidv 2719 | . . . . . . . . 9 |
49 | 48 | supeq1d 6960 | . . . . . . . 8 |
50 | 49 | oveq2d 5866 | . . . . . . 7 |
51 | 50 | eqeq2d 2182 | . . . . . 6 |
52 | 46, 51 | anbi12d 470 | . . . . 5 |
53 | 44, 52 | rspc2ev 2849 | . . . 4 |
54 | 2, 3, 36, 53 | syl3anc 1233 | . . 3 |
55 | pczcl 12239 | . . . . . . 7 | |
56 | 55 | 3adant3 1012 | . . . . . 6 |
57 | 56 | nn0zd 9319 | . . . . 5 |
58 | 1, 3 | pccld 12241 | . . . . . 6 |
59 | 58 | nn0zd 9319 | . . . . 5 |
60 | 57, 59 | zsubcld 9326 | . . . 4 |
61 | 20, 21 | pceu 12236 | . . . . 5 |
62 | 1, 5, 19, 61 | syl12anc 1231 | . . . 4 |
63 | eqeq1 2177 | . . . . . . 7 | |
64 | 63 | anbi2d 461 | . . . . . 6 |
65 | 64 | 2rexbidv 2495 | . . . . 5 |
66 | 65 | iota2 5186 | . . . 4 |
67 | 60, 62, 66 | syl2anc 409 | . . 3 |
68 | 54, 67 | mpbid 146 | . 2 |
69 | 23, 68 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 weu 2019 wcel 2141 wne 2340 wrex 2449 crab 2452 class class class wbr 3987 cio 5156 (class class class)co 5850 csup 6955 cr 7760 cc0 7761 clt 7941 cmin 8077 # cap 8487 cdiv 8576 cn 8865 cn0 9122 cz 9199 cq 9565 cexp 10462 cdvds 11736 cprime 12048 cpc 12225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-1o 6392 df-2o 6393 df-er 6509 df-en 6715 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-fz 9953 df-fzo 10086 df-fl 10213 df-mod 10266 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-dvds 11737 df-gcd 11885 df-prm 12049 df-pc 12226 |
This theorem is referenced by: pcqmul 12244 pcqcl 12247 pcid 12264 pcneg 12265 pc2dvds 12270 pcz 12272 pcaddlem 12279 pcadd 12280 pcmpt2 12283 pcbc 12290 |
Copyright terms: Public domain | W3C validator |