ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdiv Unicode version

Theorem pcdiv 12193
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
Assertion
Ref Expression
pcdiv  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  ( A  /  B ) )  =  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) ) )

Proof of Theorem pcdiv
Dummy variables  x  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 982 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  P  e.  Prime )
2 simp2l 1008 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A  e.  ZZ )
3 simp3 984 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  B  e.  NN )
4 znq 9540 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
52, 3, 4syl2anc 409 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A  /  B )  e.  QQ )
62zcnd 9293 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A  e.  CC )
73nncnd 8853 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  B  e.  CC )
8 simp2r 1009 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A  =/=  0 )
9 0z 9184 . . . . . . 7  |-  0  e.  ZZ
10 zapne 9244 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A #  0  <->  A  =/=  0 ) )
112, 9, 10sylancl 410 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A #  0  <->  A  =/=  0
) )
128, 11mpbird 166 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  A #  0 )
133nnap0d 8885 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  B #  0 )
146, 7, 12, 13divap0d 8684 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A  /  B ) #  0 )
15 zq 9542 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
169, 15ax-mp 5 . . . . 5  |-  0  e.  QQ
17 qapne 9555 . . . . 5  |-  ( ( ( A  /  B
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
185, 16, 17sylancl 410 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( A  /  B
) #  0  <->  ( A  /  B )  =/=  0
) )
1914, 18mpbid 146 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( A  /  B )  =/=  0 )
20 eqid 2157 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
21 eqid 2157 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
2220, 21pcval 12187 . . 3  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  /  B
) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
231, 5, 19, 22syl12anc 1218 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  ( A  /  B ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )
24 eqid 2157 . . . . . . . 8  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )
2524pczpre 12188 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
26253adant3 1002 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  A )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  ) )
27 nnz 9192 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  ZZ )
28 nnne0 8867 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  =/=  0 )
2927, 28jca 304 . . . . . . . 8  |-  ( B  e.  NN  ->  ( B  e.  ZZ  /\  B  =/=  0 ) )
30 eqid 2157 . . . . . . . . 9  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  )
3130pczpre 12188 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
3229, 31sylan2 284 . . . . . . 7  |-  ( ( P  e.  Prime  /\  B  e.  NN )  ->  ( P  pCnt  B )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )
33323adant2 1001 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  B )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )
3426, 33oveq12d 5845 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( P  pCnt  A
)  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) )
35 eqid 2157 . . . . 5  |-  ( A  /  B )  =  ( A  /  B
)
3634, 35jctil 310 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( A  /  B
)  =  ( A  /  B )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) ) )
37 oveq1 5834 . . . . . . 7  |-  ( x  =  A  ->  (
x  /  y )  =  ( A  / 
y ) )
3837eqeq2d 2169 . . . . . 6  |-  ( x  =  A  ->  (
( A  /  B
)  =  ( x  /  y )  <->  ( A  /  B )  =  ( A  /  y ) ) )
39 breq2 3971 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  A ) )
4039rabbidv 2701 . . . . . . . . 9  |-  ( x  =  A  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  A }
)
4140supeq1d 6934 . . . . . . . 8  |-  ( x  =  A  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  ) )
4241oveq1d 5842 . . . . . . 7  |-  ( x  =  A  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )
4342eqeq2d 2169 . . . . . 6  |-  ( x  =  A  ->  (
( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
4438, 43anbi12d 465 . . . . 5  |-  ( x  =  A  ->  (
( ( A  /  B )  =  ( x  /  y )  /\  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( ( A  /  B )  =  ( A  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
45 oveq2 5835 . . . . . . 7  |-  ( y  =  B  ->  ( A  /  y )  =  ( A  /  B
) )
4645eqeq2d 2169 . . . . . 6  |-  ( y  =  B  ->  (
( A  /  B
)  =  ( A  /  y )  <->  ( A  /  B )  =  ( A  /  B ) ) )
47 breq2 3971 . . . . . . . . . 10  |-  ( y  =  B  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  B ) )
4847rabbidv 2701 . . . . . . . . 9  |-  ( y  =  B  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  B }
)
4948supeq1d 6934 . . . . . . . 8  |-  ( y  =  B  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )
5049oveq2d 5843 . . . . . . 7  |-  ( y  =  B  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
) )
5150eqeq2d 2169 . . . . . 6  |-  ( y  =  B  ->  (
( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
) ) )
5246, 51anbi12d 465 . . . . 5  |-  ( y  =  B  ->  (
( ( A  /  B )  =  ( A  /  y )  /\  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( ( A  /  B )  =  ( A  /  B
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
) ) ) )
5344, 52rspc2ev 2831 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN  /\  (
( A  /  B
)  =  ( A  /  B )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
542, 3, 36, 53syl3anc 1220 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
55 pczcl 12189 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
56553adant3 1002 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  A )  e. 
NN0 )
5756nn0zd 9290 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  A )  e.  ZZ )
581, 3pccld 12191 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  B )  e. 
NN0 )
5958nn0zd 9290 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  B )  e.  ZZ )
6057, 59zsubcld 9297 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  (
( P  pCnt  A
)  -  ( P 
pCnt  B ) )  e.  ZZ )
6120, 21pceu 12186 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
621, 5, 19, 61syl12anc 1218 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
63 eqeq1 2164 . . . . . . 7  |-  ( z  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  ->  ( z  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
6463anbi2d 460 . . . . . 6  |-  ( z  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  ->  ( ( ( A  /  B )  =  ( x  / 
y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
65642rexbidv 2482 . . . . 5  |-  ( z  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
6665iota2 5164 . . . 4  |-  ( ( ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  e.  ZZ  /\  E! z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  ( ( P  pCnt  A )  -  ( P  pCnt  B ) )  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) ) )
6760, 62, 66syl2anc 409 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
( A  /  B
)  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) ) )
6854, 67mpbid 146 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( ( A  /  B )  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )  =  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) ) )
6923, 68eqtrd 2190 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  B  e.  NN )  ->  ( P  pCnt  ( A  /  B ) )  =  ( ( P  pCnt  A )  -  ( P 
pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335   E!weu 2006    e. wcel 2128    =/= wne 2327   E.wrex 2436   {crab 2439   class class class wbr 3967   iotacio 5136  (class class class)co 5827   supcsup 6929   RRcr 7734   0cc0 7735    < clt 7915    - cmin 8051   # cap 8461    / cdiv 8550   NNcn 8839   NN0cn0 9096   ZZcz 9173   QQcq 9535   ^cexp 10428    || cdvds 11695   Primecprime 12000    pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by:  pcqmul  12194  pcqcl  12197  pcid  12213  pcneg  12214
  Copyright terms: Public domain W3C validator