Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > istopg | Unicode version |
Description: Express the predicate
" is a
topology". See istopfin 12638 for
another characterization using nonempty finite intersections instead of
binary intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
istopg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 3562 | . . . . 5 | |
2 | eleq2 2230 | . . . . 5 | |
3 | 1, 2 | raleqbidv 2673 | . . . 4 |
4 | eleq2 2230 | . . . . . 6 | |
5 | 4 | raleqbi1dv 2669 | . . . . 5 |
6 | 5 | raleqbi1dv 2669 | . . . 4 |
7 | 3, 6 | anbi12d 465 | . . 3 |
8 | df-top 12636 | . . 3 | |
9 | 7, 8 | elab2g 2873 | . 2 |
10 | df-ral 2449 | . . . 4 | |
11 | elpw2g 4135 | . . . . . 6 | |
12 | 11 | imbi1d 230 | . . . . 5 |
13 | 12 | albidv 1812 | . . . 4 |
14 | 10, 13 | syl5bb 191 | . . 3 |
15 | 14 | anbi1d 461 | . 2 |
16 | 9, 15 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 wral 2444 cin 3115 wss 3116 cpw 3559 cuni 3789 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-top 12636 |
This theorem is referenced by: istopfin 12638 uniopn 12639 inopn 12641 tgcl 12704 distop 12725 epttop 12730 |
Copyright terms: Public domain | W3C validator |