| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > istopg | Unicode version | ||
| Description: Express the predicate
"
Note: In the literature, a topology is often represented by a
calligraphic letter T, which resembles the letter J. This confusion may
have led to J being used by some authors (e.g., K. D. Joshi,
Introduction to General Topology (1983), p. 114) and it is
convenient
for us since we later use |
| Ref | Expression |
|---|---|
| istopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3629 |
. . . . 5
| |
| 2 | eleq2 2271 |
. . . . 5
| |
| 3 | 1, 2 | raleqbidv 2721 |
. . . 4
|
| 4 | eleq2 2271 |
. . . . . 6
| |
| 5 | 4 | raleqbi1dv 2717 |
. . . . 5
|
| 6 | 5 | raleqbi1dv 2717 |
. . . 4
|
| 7 | 3, 6 | anbi12d 473 |
. . 3
|
| 8 | df-top 14585 |
. . 3
| |
| 9 | 7, 8 | elab2g 2927 |
. 2
|
| 10 | df-ral 2491 |
. . . 4
| |
| 11 | elpw2g 4216 |
. . . . . 6
| |
| 12 | 11 | imbi1d 231 |
. . . . 5
|
| 13 | 12 | albidv 1848 |
. . . 4
|
| 14 | 10, 13 | bitrid 192 |
. . 3
|
| 15 | 14 | anbi1d 465 |
. 2
|
| 16 | 9, 15 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-top 14585 |
| This theorem is referenced by: istopfin 14587 uniopn 14588 inopn 14590 tgcl 14651 distop 14672 epttop 14677 |
| Copyright terms: Public domain | W3C validator |