ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopfin Unicode version

Theorem istopfin 14674
Description: Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14673. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
Assertion
Ref Expression
istopfin  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
Distinct variable group:    x, J

Proof of Theorem istopfin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 istopg 14673 . . 3  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
21ibi 176 . 2  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) )
3 fiintim 7093 . . 3  |-  ( A. x  e.  J  A. y  e.  J  (
x  i^i  y )  e.  J  ->  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) )
43anim2i 342 . 2  |-  ( ( A. x ( x 
C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  (
x  i^i  y )  e.  J )  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
52, 4syl 14 1  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002   A.wal 1393    e. wcel 2200    =/= wne 2400   A.wral 2508    i^i cin 3196    C_ wss 3197   (/)c0 3491   U.cuni 3888   |^|cint 3923   Fincfn 6887   Topctop 14671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6680  df-en 6888  df-fin 6890  df-top 14672
This theorem is referenced by:  fiinopn  14678
  Copyright terms: Public domain W3C validator