ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopfin Unicode version

Theorem istopfin 13640
Description: Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 13639. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
Assertion
Ref Expression
istopfin  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
Distinct variable group:    x, J

Proof of Theorem istopfin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 istopg 13639 . . 3  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
21ibi 176 . 2  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) )
3 fiintim 6931 . . 3  |-  ( A. x  e.  J  A. y  e.  J  (
x  i^i  y )  e.  J  ->  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) )
43anim2i 342 . 2  |-  ( ( A. x ( x 
C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  (
x  i^i  y )  e.  J )  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
52, 4syl 14 1  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978   A.wal 1351    e. wcel 2148    =/= wne 2347   A.wral 2455    i^i cin 3130    C_ wss 3131   (/)c0 3424   U.cuni 3811   |^|cint 3846   Fincfn 6743   Topctop 13637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-er 6538  df-en 6744  df-fin 6746  df-top 13638
This theorem is referenced by:  fiinopn  13644
  Copyright terms: Public domain W3C validator