ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgival Unicode version

Theorem rdgival 6491
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
rdgival  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Distinct variable groups:    x, A    x, B    x, F    x, V

Proof of Theorem rdgival
StepHypRef Expression
1 rdgivallem 6490 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
2 fvres 5623 . . . . 5  |-  ( x  e.  B  ->  (
( rec ( F ,  A )  |`  B ) `  x
)  =  ( rec ( F ,  A
) `  x )
)
32fveq2d 5603 . . . 4  |-  ( x  e.  B  ->  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) )  =  ( F `  ( rec ( F ,  A
) `  x )
) )
43iuneq2i 3959 . . 3  |-  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  =  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )
54uneq2i 3332 . 2  |-  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )
61, 5eqtrdi 2256 1  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172   U_ciun 3941   Oncon0 4428    |` cres 4695    Fn wfn 5285   ` cfv 5290   reccrdg 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414  df-irdg 6479
This theorem is referenced by:  rdgss  6492  rdgisuc1  6493  rdgisucinc  6494  oav2  6572  omv2  6574
  Copyright terms: Public domain W3C validator