ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgival Unicode version

Theorem rdgival 6077
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
rdgival  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Distinct variable groups:    x, A    x, B    x, F    x, V

Proof of Theorem rdgival
StepHypRef Expression
1 rdgivallem 6076 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
2 fvres 5272 . . . . 5  |-  ( x  e.  B  ->  (
( rec ( F ,  A )  |`  B ) `  x
)  =  ( rec ( F ,  A
) `  x )
)
32fveq2d 5255 . . . 4  |-  ( x  e.  B  ->  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) )  =  ( F `  ( rec ( F ,  A
) `  x )
) )
43iuneq2i 3722 . . 3  |-  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  =  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )
54uneq2i 3135 . 2  |-  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )
61, 5syl6eq 2131 1  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 920    = wceq 1285    e. wcel 1434   _Vcvv 2612    u. cun 2982   U_ciun 3704   Oncon0 4153    |` cres 4401    Fn wfn 4962   ` cfv 4967   reccrdg 6064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-suc 4161  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-recs 6000  df-irdg 6065
This theorem is referenced by:  rdgss  6078  rdgisuc1  6079  rdgisucinc  6080  oav2  6154  omv2  6156
  Copyright terms: Public domain W3C validator