ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgival Unicode version

Theorem rdgival 6435
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
rdgival  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Distinct variable groups:    x, A    x, B    x, F    x, V

Proof of Theorem rdgival
StepHypRef Expression
1 rdgivallem 6434 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
2 fvres 5578 . . . . 5  |-  ( x  e.  B  ->  (
( rec ( F ,  A )  |`  B ) `  x
)  =  ( rec ( F ,  A
) `  x )
)
32fveq2d 5558 . . . 4  |-  ( x  e.  B  ->  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) )  =  ( F `  ( rec ( F ,  A
) `  x )
) )
43iuneq2i 3930 . . 3  |-  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  =  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )
54uneq2i 3310 . 2  |-  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )
61, 5eqtrdi 2242 1  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151   U_ciun 3912   Oncon0 4394    |` cres 4661    Fn wfn 5249   ` cfv 5254   reccrdg 6422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358  df-irdg 6423
This theorem is referenced by:  rdgss  6436  rdgisuc1  6437  rdgisucinc  6438  oav2  6516  omv2  6518
  Copyright terms: Public domain W3C validator