ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgival Unicode version

Theorem rdgival 6468
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
rdgival  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Distinct variable groups:    x, A    x, B    x, F    x, V

Proof of Theorem rdgival
StepHypRef Expression
1 rdgivallem 6467 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) ) )
2 fvres 5600 . . . . 5  |-  ( x  e.  B  ->  (
( rec ( F ,  A )  |`  B ) `  x
)  =  ( rec ( F ,  A
) `  x )
)
32fveq2d 5580 . . . 4  |-  ( x  e.  B  ->  ( F `  ( ( rec ( F ,  A
)  |`  B ) `  x ) )  =  ( F `  ( rec ( F ,  A
) `  x )
) )
43iuneq2i 3945 . . 3  |-  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) )  =  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )
54uneq2i 3324 . 2  |-  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `  x
) ) )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )
61, 5eqtrdi 2254 1  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772    u. cun 3164   U_ciun 3927   Oncon0 4410    |` cres 4677    Fn wfn 5266   ` cfv 5271   reccrdg 6455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6391  df-irdg 6456
This theorem is referenced by:  rdgss  6469  rdgisuc1  6470  rdgisucinc  6471  oav2  6549  omv2  6551
  Copyright terms: Public domain W3C validator