ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt Unicode version

Theorem dfmpt 5812
Description: Alternate definition for the maps-to notation df-mpt 4147 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
dfmpt.1  |-  B  e. 
_V
Assertion
Ref Expression
dfmpt  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }

Proof of Theorem dfmpt
StepHypRef Expression
1 dfmpt3 5446 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
2 vex 2802 . . . . 5  |-  x  e. 
_V
3 dfmpt.1 . . . . 5  |-  B  e. 
_V
42, 3xpsn 5811 . . . 4  |-  ( { x }  X.  { B } )  =  { <. x ,  B >. }
54a1i 9 . . 3  |-  ( x  e.  A  ->  ( { x }  X.  { B } )  =  { <. x ,  B >. } )
65iuneq2i 3983 . 2  |-  U_ x  e.  A  ( {
x }  X.  { B } )  =  U_ x  e.  A  { <. x ,  B >. }
71, 6eqtri 2250 1  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   U_ciun 3965    |-> cmpt 4145    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  fnasrn  5813  dfmpo  6369
  Copyright terms: Public domain W3C validator