ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt Unicode version

Theorem dfmpt 5474
Description: Alternate definition for the maps-to notation df-mpt 3901 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
dfmpt.1  |-  B  e. 
_V
Assertion
Ref Expression
dfmpt  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }

Proof of Theorem dfmpt
StepHypRef Expression
1 dfmpt3 5136 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
2 vex 2622 . . . . 5  |-  x  e. 
_V
3 dfmpt.1 . . . . 5  |-  B  e. 
_V
42, 3xpsn 5473 . . . 4  |-  ( { x }  X.  { B } )  =  { <. x ,  B >. }
54a1i 9 . . 3  |-  ( x  e.  A  ->  ( { x }  X.  { B } )  =  { <. x ,  B >. } )
65iuneq2i 3748 . 2  |-  U_ x  e.  A  ( {
x }  X.  { B } )  =  U_ x  e.  A  { <. x ,  B >. }
71, 6eqtri 2108 1  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1289    e. wcel 1438   _Vcvv 2619   {csn 3446   <.cop 3449   U_ciun 3730    |-> cmpt 3899    X. cxp 4436
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022
This theorem is referenced by:  fnasrn  5475  dfmpt2  5988
  Copyright terms: Public domain W3C validator