ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt Unicode version

Theorem dfmpt 5735
Description: Alternate definition for the maps-to notation df-mpt 4092 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
dfmpt.1  |-  B  e. 
_V
Assertion
Ref Expression
dfmpt  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }

Proof of Theorem dfmpt
StepHypRef Expression
1 dfmpt3 5376 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
2 vex 2763 . . . . 5  |-  x  e. 
_V
3 dfmpt.1 . . . . 5  |-  B  e. 
_V
42, 3xpsn 5734 . . . 4  |-  ( { x }  X.  { B } )  =  { <. x ,  B >. }
54a1i 9 . . 3  |-  ( x  e.  A  ->  ( { x }  X.  { B } )  =  { <. x ,  B >. } )
65iuneq2i 3930 . 2  |-  U_ x  e.  A  ( {
x }  X.  { B } )  =  U_ x  e.  A  { <. x ,  B >. }
71, 6eqtri 2214 1  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618   <.cop 3621   U_ciun 3912    |-> cmpt 4090    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  fnasrn  5736  dfmpo  6276
  Copyright terms: Public domain W3C validator