ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemulge11 Unicode version

Theorem lemulge11 8782
Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
lemulge11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  ( A  x.  B
) )

Proof of Theorem lemulge11
StepHypRef Expression
1 ax-1rid 7881 . . 3  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
21ad2antrr 485 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  x.  1 )  =  A )
3 simpll 524 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  e.  RR )
4 simprl 526 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  0  <_  A )
53, 4jca 304 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  e.  RR  /\  0  <_  A ) )
6 simplr 525 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  B  e.  RR )
7 1re 7919 . . . . . 6  |-  1  e.  RR
8 0le1 8400 . . . . . 6  |-  0  <_  1
97, 8pm3.2i 270 . . . . 5  |-  ( 1  e.  RR  /\  0  <_  1 )
106, 9jctil 310 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) )
115, 3, 10jca31 307 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  (
( ( A  e.  RR  /\  0  <_  A )  /\  A  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) ) )
12 leid 8003 . . . . 5  |-  ( A  e.  RR  ->  A  <_  A )
1312ad2antrr 485 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  A )
14 simprr 527 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  1  <_  B )
1513, 14jca 304 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  <_  A  /\  1  <_  B ) )
16 lemul12a 8778 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  A  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) )  ->  (
( A  <_  A  /\  1  <_  B )  ->  ( A  x.  1 )  <_  ( A  x.  B )
) )
1711, 15, 16sylc 62 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  x.  1 )  <_  ( A  x.  B ) )
182, 17eqbrtrrd 4013 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  lemulge12  8783  lemulge11d  8853  faclbnd  10675
  Copyright terms: Public domain W3C validator