ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemulge11 Unicode version

Theorem lemulge11 8388
Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
lemulge11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  ( A  x.  B
) )

Proof of Theorem lemulge11
StepHypRef Expression
1 ax-1rid 7513 . . 3  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
21ad2antrr 473 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  x.  1 )  =  A )
3 simpll 497 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  e.  RR )
4 simprl 499 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  0  <_  A )
53, 4jca 301 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  e.  RR  /\  0  <_  A ) )
6 simplr 498 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  B  e.  RR )
7 1re 7548 . . . . . 6  |-  1  e.  RR
8 0le1 8020 . . . . . 6  |-  0  <_  1
97, 8pm3.2i 267 . . . . 5  |-  ( 1  e.  RR  /\  0  <_  1 )
106, 9jctil 306 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) )
115, 3, 10jca31 303 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  (
( ( A  e.  RR  /\  0  <_  A )  /\  A  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) ) )
12 leid 7630 . . . . 5  |-  ( A  e.  RR  ->  A  <_  A )
1312ad2antrr 473 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  A )
14 simprr 500 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  1  <_  B )
1513, 14jca 301 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  <_  A  /\  1  <_  B ) )
16 lemul12a 8384 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  A  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  B  e.  RR ) )  ->  (
( A  <_  A  /\  1  <_  B )  ->  ( A  x.  1 )  <_  ( A  x.  B )
) )
1711, 15, 16sylc 62 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  ( A  x.  1 )  <_  ( A  x.  B ) )
182, 17eqbrtrrd 3873 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  1  <_  B
) )  ->  A  <_  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   class class class wbr 3851  (class class class)co 5666   RRcr 7410   0cc0 7411   1c1 7412    x. cmul 7416    <_ cle 7584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-po 4132  df-iso 4133  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120
This theorem is referenced by:  lemulge12  8389  lemulge11d  8459  faclbnd  10210
  Copyright terms: Public domain W3C validator