ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemex Unicode version

Theorem suplocexprlemex 7663
Description: Lemma for suplocexpr 7666. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemex  |-  ( ph  ->  B  e.  P. )
Distinct variable groups:    u, A, w, z    x, A, u, y, z    w, B    ph, u, w, z    ph, x, y
Allowed substitution hints:    B( x, y, z, u)

Proof of Theorem suplocexprlemex
Dummy variables  q  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.b . . 3  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
2 suplocexpr.m . . . . . 6  |-  ( ph  ->  E. x  x  e.  A )
3 suplocexpr.ub . . . . . 6  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
4 suplocexpr.loc . . . . . 6  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
52, 3, 4suplocexprlemss 7656 . . . . 5  |-  ( ph  ->  A  C_  P. )
61suplocexprlem2b 7655 . . . . 5  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87opeq2d 3765 . . 3  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )
91, 8eqtr4id 2218 . 2  |-  ( ph  ->  B  =  <. U. ( 1st " A ) ,  ( 2nd `  B
) >. )
10 suplocexprlemell 7654 . . . . . . . . 9  |-  ( s  e.  U. ( 1st " A )  <->  E. t  e.  A  s  e.  ( 1st `  t ) )
1110biimpi 119 . . . . . . . 8  |-  ( s  e.  U. ( 1st " A )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
1211adantl 275 . . . . . . 7  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
135ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  A  C_  P. )
14 simprl 521 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  A
)
1513, 14sseldd 3143 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  P. )
16 prop 7416 . . . . . . . . 9  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  <. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P. )
18 simprr 522 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  ( 1st `  t ) )
19 elprnql 7422 . . . . . . . 8  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  s  e.  ( 1st `  t ) )  -> 
s  e.  Q. )
2017, 18, 19syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  Q. )
2112, 20rexlimddv 2588 . . . . . 6  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  s  e.  Q. )
2221ex 114 . . . . 5  |-  ( ph  ->  ( s  e.  U. ( 1st " A )  ->  s  e.  Q. ) )
2322ssrdv 3148 . . . 4  |-  ( ph  ->  U. ( 1st " A
)  C_  Q. )
24 ssrab2 3227 . . . . 5  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  C_  Q.
257, 24eqsstrdi 3194 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  C_  Q. )
262, 3, 4suplocexprlemml 7657 . . . . 5  |-  ( ph  ->  E. q  e.  Q.  q  e.  U. ( 1st " A ) )
272, 3, 4, 1suplocexprlemmu 7659 . . . . 5  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
2826, 27jca 304 . . . 4  |-  ( ph  ->  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )
2923, 25, 28jca31 307 . . 3  |-  ( ph  ->  ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) ) )
302, 3, 4suplocexprlemrl 7658 . . . . 5  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
312, 3, 4, 1suplocexprlemru 7660 . . . . 5  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3230, 31jca 304 . . . 4  |-  ( ph  ->  ( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
332, 3, 4, 1suplocexprlemdisj 7661 . . . 4  |-  ( ph  ->  A. q  e.  Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
342, 3, 4, 1suplocexprlemloc 7662 . . . 4  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
3532, 33, 343jca 1167 . . 3  |-  ( ph  ->  ( ( A. q  e.  Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) )
36 elinp 7415 . . 3  |-  ( <. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P.  <->  ( ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )  /\  (
( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) ) )
3729, 35, 36sylanbrc 414 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P. )
389, 37eqeltrd 2243 1  |-  ( ph  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   <.cop 3579   U.cuni 3789   |^|cint 3824   class class class wbr 3982   "cima 4607   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    <Q cltq 7226   P.cnp 7232    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iltp 7411
This theorem is referenced by:  suplocexprlemub  7664  suplocexpr  7666
  Copyright terms: Public domain W3C validator