ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemex Unicode version

Theorem suplocexprlemex 7905
Description: Lemma for suplocexpr 7908. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemex  |-  ( ph  ->  B  e.  P. )
Distinct variable groups:    u, A, w, z    x, A, u, y, z    w, B    ph, u, w, z    ph, x, y
Allowed substitution hints:    B( x, y, z, u)

Proof of Theorem suplocexprlemex
Dummy variables  q  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.b . . 3  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
2 suplocexpr.m . . . . . 6  |-  ( ph  ->  E. x  x  e.  A )
3 suplocexpr.ub . . . . . 6  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
4 suplocexpr.loc . . . . . 6  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
52, 3, 4suplocexprlemss 7898 . . . . 5  |-  ( ph  ->  A  C_  P. )
61suplocexprlem2b 7897 . . . . 5  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87opeq2d 3863 . . 3  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )
91, 8eqtr4id 2281 . 2  |-  ( ph  ->  B  =  <. U. ( 1st " A ) ,  ( 2nd `  B
) >. )
10 suplocexprlemell 7896 . . . . . . . . 9  |-  ( s  e.  U. ( 1st " A )  <->  E. t  e.  A  s  e.  ( 1st `  t ) )
1110biimpi 120 . . . . . . . 8  |-  ( s  e.  U. ( 1st " A )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
1211adantl 277 . . . . . . 7  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
135ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  A  C_  P. )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  A
)
1513, 14sseldd 3225 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  P. )
16 prop 7658 . . . . . . . . 9  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  <. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P. )
18 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  ( 1st `  t ) )
19 elprnql 7664 . . . . . . . 8  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  s  e.  ( 1st `  t ) )  -> 
s  e.  Q. )
2017, 18, 19syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  Q. )
2112, 20rexlimddv 2653 . . . . . 6  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  s  e.  Q. )
2221ex 115 . . . . 5  |-  ( ph  ->  ( s  e.  U. ( 1st " A )  ->  s  e.  Q. ) )
2322ssrdv 3230 . . . 4  |-  ( ph  ->  U. ( 1st " A
)  C_  Q. )
24 ssrab2 3309 . . . . 5  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  C_  Q.
257, 24eqsstrdi 3276 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  C_  Q. )
262, 3, 4suplocexprlemml 7899 . . . . 5  |-  ( ph  ->  E. q  e.  Q.  q  e.  U. ( 1st " A ) )
272, 3, 4, 1suplocexprlemmu 7901 . . . . 5  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
2826, 27jca 306 . . . 4  |-  ( ph  ->  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )
2923, 25, 28jca31 309 . . 3  |-  ( ph  ->  ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) ) )
302, 3, 4suplocexprlemrl 7900 . . . . 5  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
312, 3, 4, 1suplocexprlemru 7902 . . . . 5  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3230, 31jca 306 . . . 4  |-  ( ph  ->  ( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
332, 3, 4, 1suplocexprlemdisj 7903 . . . 4  |-  ( ph  ->  A. q  e.  Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
342, 3, 4, 1suplocexprlemloc 7904 . . . 4  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
3532, 33, 343jca 1201 . . 3  |-  ( ph  ->  ( ( A. q  e.  Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) )
36 elinp 7657 . . 3  |-  ( <. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P.  <->  ( ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )  /\  (
( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) ) )
3729, 35, 36sylanbrc 417 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P. )
389, 37eqeltrd 2306 1  |-  ( ph  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512    C_ wss 3197   <.cop 3669   U.cuni 3887   |^|cint 3922   class class class wbr 4082   "cima 4721   ` cfv 5317   1stc1st 6282   2ndc2nd 6283   Q.cnq 7463    <Q cltq 7468   P.cnp 7474    <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iltp 7653
This theorem is referenced by:  suplocexprlemub  7906  suplocexpr  7908
  Copyright terms: Public domain W3C validator