ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemex Unicode version

Theorem suplocexprlemex 7870
Description: Lemma for suplocexpr 7873. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemex  |-  ( ph  ->  B  e.  P. )
Distinct variable groups:    u, A, w, z    x, A, u, y, z    w, B    ph, u, w, z    ph, x, y
Allowed substitution hints:    B( x, y, z, u)

Proof of Theorem suplocexprlemex
Dummy variables  q  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.b . . 3  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
2 suplocexpr.m . . . . . 6  |-  ( ph  ->  E. x  x  e.  A )
3 suplocexpr.ub . . . . . 6  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
4 suplocexpr.loc . . . . . 6  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
52, 3, 4suplocexprlemss 7863 . . . . 5  |-  ( ph  ->  A  C_  P. )
61suplocexprlem2b 7862 . . . . 5  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87opeq2d 3840 . . 3  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )
91, 8eqtr4id 2259 . 2  |-  ( ph  ->  B  =  <. U. ( 1st " A ) ,  ( 2nd `  B
) >. )
10 suplocexprlemell 7861 . . . . . . . . 9  |-  ( s  e.  U. ( 1st " A )  <->  E. t  e.  A  s  e.  ( 1st `  t ) )
1110biimpi 120 . . . . . . . 8  |-  ( s  e.  U. ( 1st " A )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
1211adantl 277 . . . . . . 7  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
135ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  A  C_  P. )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  A
)
1513, 14sseldd 3202 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  P. )
16 prop 7623 . . . . . . . . 9  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  <. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P. )
18 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  ( 1st `  t ) )
19 elprnql 7629 . . . . . . . 8  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  s  e.  ( 1st `  t ) )  -> 
s  e.  Q. )
2017, 18, 19syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  Q. )
2112, 20rexlimddv 2630 . . . . . 6  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  s  e.  Q. )
2221ex 115 . . . . 5  |-  ( ph  ->  ( s  e.  U. ( 1st " A )  ->  s  e.  Q. ) )
2322ssrdv 3207 . . . 4  |-  ( ph  ->  U. ( 1st " A
)  C_  Q. )
24 ssrab2 3286 . . . . 5  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  C_  Q.
257, 24eqsstrdi 3253 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  C_  Q. )
262, 3, 4suplocexprlemml 7864 . . . . 5  |-  ( ph  ->  E. q  e.  Q.  q  e.  U. ( 1st " A ) )
272, 3, 4, 1suplocexprlemmu 7866 . . . . 5  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
2826, 27jca 306 . . . 4  |-  ( ph  ->  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )
2923, 25, 28jca31 309 . . 3  |-  ( ph  ->  ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) ) )
302, 3, 4suplocexprlemrl 7865 . . . . 5  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
312, 3, 4, 1suplocexprlemru 7867 . . . . 5  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3230, 31jca 306 . . . 4  |-  ( ph  ->  ( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
332, 3, 4, 1suplocexprlemdisj 7868 . . . 4  |-  ( ph  ->  A. q  e.  Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
342, 3, 4, 1suplocexprlemloc 7869 . . . 4  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
3532, 33, 343jca 1180 . . 3  |-  ( ph  ->  ( ( A. q  e.  Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) )
36 elinp 7622 . . 3  |-  ( <. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P.  <->  ( ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )  /\  (
( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) ) )
3729, 35, 36sylanbrc 417 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P. )
389, 37eqeltrd 2284 1  |-  ( ph  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490    C_ wss 3174   <.cop 3646   U.cuni 3864   |^|cint 3899   class class class wbr 4059   "cima 4696   ` cfv 5290   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428    <Q cltq 7433   P.cnp 7439    <P cltp 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iltp 7618
This theorem is referenced by:  suplocexprlemub  7871  suplocexpr  7873
  Copyright terms: Public domain W3C validator