ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemex Unicode version

Theorem suplocexprlemex 7784
Description: Lemma for suplocexpr 7787. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemex  |-  ( ph  ->  B  e.  P. )
Distinct variable groups:    u, A, w, z    x, A, u, y, z    w, B    ph, u, w, z    ph, x, y
Allowed substitution hints:    B( x, y, z, u)

Proof of Theorem suplocexprlemex
Dummy variables  q  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.b . . 3  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
2 suplocexpr.m . . . . . 6  |-  ( ph  ->  E. x  x  e.  A )
3 suplocexpr.ub . . . . . 6  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
4 suplocexpr.loc . . . . . 6  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
52, 3, 4suplocexprlemss 7777 . . . . 5  |-  ( ph  ->  A  C_  P. )
61suplocexprlem2b 7776 . . . . 5  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87opeq2d 3812 . . 3  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >. )
91, 8eqtr4id 2245 . 2  |-  ( ph  ->  B  =  <. U. ( 1st " A ) ,  ( 2nd `  B
) >. )
10 suplocexprlemell 7775 . . . . . . . . 9  |-  ( s  e.  U. ( 1st " A )  <->  E. t  e.  A  s  e.  ( 1st `  t ) )
1110biimpi 120 . . . . . . . 8  |-  ( s  e.  U. ( 1st " A )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
1211adantl 277 . . . . . . 7  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  E. t  e.  A  s  e.  ( 1st `  t ) )
135ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  A  C_  P. )
14 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  A
)
1513, 14sseldd 3181 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  t  e.  P. )
16 prop 7537 . . . . . . . . 9  |-  ( t  e.  P.  ->  <. ( 1st `  t ) ,  ( 2nd `  t
) >.  e.  P. )
1715, 16syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  <. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P. )
18 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  ( 1st `  t ) )
19 elprnql 7543 . . . . . . . 8  |-  ( (
<. ( 1st `  t
) ,  ( 2nd `  t ) >.  e.  P.  /\  s  e.  ( 1st `  t ) )  -> 
s  e.  Q. )
2017, 18, 19syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  U. ( 1st " A
) )  /\  (
t  e.  A  /\  s  e.  ( 1st `  t ) ) )  ->  s  e.  Q. )
2112, 20rexlimddv 2616 . . . . . 6  |-  ( (
ph  /\  s  e.  U. ( 1st " A
) )  ->  s  e.  Q. )
2221ex 115 . . . . 5  |-  ( ph  ->  ( s  e.  U. ( 1st " A )  ->  s  e.  Q. ) )
2322ssrdv 3186 . . . 4  |-  ( ph  ->  U. ( 1st " A
)  C_  Q. )
24 ssrab2 3265 . . . . 5  |-  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }  C_  Q.
257, 24eqsstrdi 3232 . . . 4  |-  ( ph  ->  ( 2nd `  B
)  C_  Q. )
262, 3, 4suplocexprlemml 7778 . . . . 5  |-  ( ph  ->  E. q  e.  Q.  q  e.  U. ( 1st " A ) )
272, 3, 4, 1suplocexprlemmu 7780 . . . . 5  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
2826, 27jca 306 . . . 4  |-  ( ph  ->  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )
2923, 25, 28jca31 309 . . 3  |-  ( ph  ->  ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) ) )
302, 3, 4suplocexprlemrl 7779 . . . . 5  |-  ( ph  ->  A. q  e.  Q.  ( q  e.  U. ( 1st " A )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
312, 3, 4, 1suplocexprlemru 7781 . . . . 5  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3230, 31jca 306 . . . 4  |-  ( ph  ->  ( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
332, 3, 4, 1suplocexprlemdisj 7782 . . . 4  |-  ( ph  ->  A. q  e.  Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
342, 3, 4, 1suplocexprlemloc 7783 . . . 4  |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
3532, 33, 343jca 1179 . . 3  |-  ( ph  ->  ( ( A. q  e.  Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) )
36 elinp 7536 . . 3  |-  ( <. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P.  <->  ( ( ( U. ( 1st " A )  C_  Q.  /\  ( 2nd `  B
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  U. ( 1st " A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )  /\  (
( A. q  e. 
Q.  ( q  e. 
U. ( 1st " A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) )  /\  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) ) ) )
3729, 35, 36sylanbrc 417 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  ( 2nd `  B ) >.  e.  P. )
389, 37eqeltrd 2270 1  |-  ( ph  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3154   <.cop 3622   U.cuni 3836   |^|cint 3871   class class class wbr 4030   "cima 4663   ` cfv 5255   1stc1st 6193   2ndc2nd 6194   Q.cnq 7342    <Q cltq 7347   P.cnp 7353    <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iltp 7532
This theorem is referenced by:  suplocexprlemub  7785  suplocexpr  7787
  Copyright terms: Public domain W3C validator