| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrzring | Unicode version | ||
| Description: Ring divisibility in the
ring of integers corresponds to ordinary
divisibility in |
| Ref | Expression |
|---|---|
| dvdsrzring |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | 1 | anim1i 340 |
. . . 4
|
| 3 | simpl 109 |
. . . . 5
| |
| 4 | zmulcl 9496 |
. . . . . . . . 9
| |
| 5 | 4 | ancoms 268 |
. . . . . . . 8
|
| 6 | eleq1 2292 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl5ibcom 155 |
. . . . . . 7
|
| 8 | 7 | rexlimdva 2648 |
. . . . . 6
|
| 9 | 8 | imp 124 |
. . . . 5
|
| 10 | simpr 110 |
. . . . 5
| |
| 11 | 3, 9, 10 | jca31 309 |
. . . 4
|
| 12 | 2, 11 | impbii 126 |
. . 3
|
| 13 | 12 | opabbii 4150 |
. 2
|
| 14 | df-dvds 12294 |
. 2
| |
| 15 | zringbas 14554 |
. . . . 5
| |
| 16 | 15 | a1i 9 |
. . . 4
|
| 17 | eqidd 2230 |
. . . 4
| |
| 18 | zringring 14551 |
. . . . 5
| |
| 19 | ringsrg 14005 |
. . . . 5
| |
| 20 | 18, 19 | mp1i 10 |
. . . 4
|
| 21 | zringmulr 14557 |
. . . . 5
| |
| 22 | 21 | a1i 9 |
. . . 4
|
| 23 | 16, 17, 20, 22 | dvdsrvald 14051 |
. . 3
|
| 24 | 23 | mptru 1404 |
. 2
|
| 25 | 13, 14, 24 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-dec 9575 df-uz 9719 df-rp 9846 df-fz 10201 df-cj 11348 df-abs 11505 df-dvds 12294 df-struct 13029 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-starv 13120 df-tset 13124 df-ple 13125 df-ds 13127 df-unif 13128 df-0g 13286 df-topgen 13288 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-subg 13702 df-cmn 13818 df-abl 13819 df-mgp 13879 df-ur 13918 df-srg 13922 df-ring 13956 df-cring 13957 df-dvdsr 14047 df-subrg 14177 df-bl 14504 df-mopn 14505 df-fg 14507 df-metu 14508 df-cnfld 14515 df-zring 14549 |
| This theorem is referenced by: zndvds 14607 |
| Copyright terms: Public domain | W3C validator |