ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrzring Unicode version

Theorem dvdsrzring 14102
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
dvdsrzring  |-  ||  =  ( ||r `
ring )

Proof of Theorem dvdsrzring
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
21anim1i 340 . . . 4  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  ->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
3 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  x  e.  ZZ )
4 zmulcl 9373 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
54ancoms 268 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
6 eleq1 2256 . . . . . . . 8  |-  ( ( z  x.  x )  =  y  ->  (
( z  x.  x
)  e.  ZZ  <->  y  e.  ZZ ) )
75, 6syl5ibcom 155 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( z  x.  x )  =  y  ->  y  e.  ZZ ) )
87rexlimdva 2611 . . . . . 6  |-  ( x  e.  ZZ  ->  ( E. z  e.  ZZ  ( z  x.  x
)  =  y  -> 
y  e.  ZZ ) )
98imp 124 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
y  e.  ZZ )
10 simpr 110 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  E. z  e.  ZZ  ( z  x.  x
)  =  y )
113, 9, 10jca31 309 . . . 4  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) )
122, 11impbii 126 . . 3  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  <->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
1312opabbii 4097 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
14 df-dvds 11934 . 2  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
15 zringbas 14095 . . . . 5  |-  ZZ  =  ( Base ` ring )
1615a1i 9 . . . 4  |-  ( T. 
->  ZZ  =  ( Base ` ring ) )
17 eqidd 2194 . . . 4  |-  ( T. 
->  ( ||r `
ring )  =  ( ||r ` ring ) )
18 zringring 14092 . . . . 5  |-ring  e.  Ring
19 ringsrg 13546 . . . . 5  |-  (ring  e.  Ring  ->ring  e. SRing )
2018, 19mp1i 10 . . . 4  |-  ( T. 
->ring  e. SRing
)
21 zringmulr 14098 . . . . 5  |-  x.  =  ( .r ` ring )
2221a1i 9 . . . 4  |-  ( T. 
->  x.  =  ( .r
` ring
) )
2316, 17, 20, 22dvdsrvald 13592 . . 3  |-  ( T. 
->  ( ||r `
ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) } )
2423mptru 1373 . 2  |-  ( ||r ` ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
2513, 14, 243eqtr4i 2224 1  |-  ||  =  ( ||r `
ring )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2164   E.wrex 2473   {copab 4090   ` cfv 5255  (class class class)co 5919    x. cmul 7879   ZZcz 9320    || cdvds 11933   Basecbs 12621   .rcmulr 12699  SRingcsrg 13462   Ringcrg 13495   ||rcdsr 13585  ℤringczring 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-rp 9723  df-fz 10078  df-cj 10989  df-abs 11146  df-dvds 11934  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-topgen 12874  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-dvdsr 13588  df-subrg 13718  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-zring 14090
This theorem is referenced by:  zndvds  14148
  Copyright terms: Public domain W3C validator