ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrzring Unicode version

Theorem dvdsrzring 14561
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
dvdsrzring  |-  ||  =  ( ||r `
ring )

Proof of Theorem dvdsrzring
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
21anim1i 340 . . . 4  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  ->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
3 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  x  e.  ZZ )
4 zmulcl 9496 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
54ancoms 268 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
6 eleq1 2292 . . . . . . . 8  |-  ( ( z  x.  x )  =  y  ->  (
( z  x.  x
)  e.  ZZ  <->  y  e.  ZZ ) )
75, 6syl5ibcom 155 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( z  x.  x )  =  y  ->  y  e.  ZZ ) )
87rexlimdva 2648 . . . . . 6  |-  ( x  e.  ZZ  ->  ( E. z  e.  ZZ  ( z  x.  x
)  =  y  -> 
y  e.  ZZ ) )
98imp 124 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
y  e.  ZZ )
10 simpr 110 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  E. z  e.  ZZ  ( z  x.  x
)  =  y )
113, 9, 10jca31 309 . . . 4  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) )
122, 11impbii 126 . . 3  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  <->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
1312opabbii 4150 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
14 df-dvds 12294 . 2  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
15 zringbas 14554 . . . . 5  |-  ZZ  =  ( Base ` ring )
1615a1i 9 . . . 4  |-  ( T. 
->  ZZ  =  ( Base ` ring ) )
17 eqidd 2230 . . . 4  |-  ( T. 
->  ( ||r `
ring )  =  ( ||r ` ring ) )
18 zringring 14551 . . . . 5  |-ring  e.  Ring
19 ringsrg 14005 . . . . 5  |-  (ring  e.  Ring  ->ring  e. SRing )
2018, 19mp1i 10 . . . 4  |-  ( T. 
->ring  e. SRing
)
21 zringmulr 14557 . . . . 5  |-  x.  =  ( .r ` ring )
2221a1i 9 . . . 4  |-  ( T. 
->  x.  =  ( .r
` ring
) )
2316, 17, 20, 22dvdsrvald 14051 . . 3  |-  ( T. 
->  ( ||r `
ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) } )
2423mptru 1404 . 2  |-  ( ||r ` ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
2513, 14, 243eqtr4i 2260 1  |-  ||  =  ( ||r `
ring )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   T. wtru 1396    e. wcel 2200   E.wrex 2509   {copab 4143   ` cfv 5317  (class class class)co 6000    x. cmul 8000   ZZcz 9442    || cdvds 12293   Basecbs 13027   .rcmulr 13106  SRingcsrg 13921   Ringcrg 13954   ||rcdsr 14044  ℤringczring 14548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-rp 9846  df-fz 10201  df-cj 11348  df-abs 11505  df-dvds 12294  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-starv 13120  df-tset 13124  df-ple 13125  df-ds 13127  df-unif 13128  df-0g 13286  df-topgen 13288  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-cring 13957  df-dvdsr 14047  df-subrg 14177  df-bl 14504  df-mopn 14505  df-fg 14507  df-metu 14508  df-cnfld 14515  df-zring 14549
This theorem is referenced by:  zndvds  14607
  Copyright terms: Public domain W3C validator