ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrzring Unicode version

Theorem dvdsrzring 13578
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
dvdsrzring  |-  ||  =  ( ||r `
ring )

Proof of Theorem dvdsrzring
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
21anim1i 340 . . . 4  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  ->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
3 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  x  e.  ZZ )
4 zmulcl 9308 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
54ancoms 268 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
6 eleq1 2240 . . . . . . . 8  |-  ( ( z  x.  x )  =  y  ->  (
( z  x.  x
)  e.  ZZ  <->  y  e.  ZZ ) )
75, 6syl5ibcom 155 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( z  x.  x )  =  y  ->  y  e.  ZZ ) )
87rexlimdva 2594 . . . . . 6  |-  ( x  e.  ZZ  ->  ( E. z  e.  ZZ  ( z  x.  x
)  =  y  -> 
y  e.  ZZ ) )
98imp 124 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
y  e.  ZZ )
10 simpr 110 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  E. z  e.  ZZ  ( z  x.  x
)  =  y )
113, 9, 10jca31 309 . . . 4  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) )
122, 11impbii 126 . . 3  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  <->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
1312opabbii 4072 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
14 df-dvds 11797 . 2  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
15 zringbas 13571 . . . . 5  |-  ZZ  =  ( Base ` ring )
1615a1i 9 . . . 4  |-  ( T. 
->  ZZ  =  ( Base ` ring ) )
17 eqidd 2178 . . . 4  |-  ( T. 
->  ( ||r `
ring )  =  ( ||r ` ring ) )
18 zringring 13568 . . . . 5  |-ring  e.  Ring
19 ringsrg 13229 . . . . 5  |-  (ring  e.  Ring  ->ring  e. SRing )
2018, 19mp1i 10 . . . 4  |-  ( T. 
->ring  e. SRing
)
21 zringmulr 13574 . . . . 5  |-  x.  =  ( .r ` ring )
2221a1i 9 . . . 4  |-  ( T. 
->  x.  =  ( .r
` ring
) )
2316, 17, 20, 22dvdsrvald 13267 . . 3  |-  ( T. 
->  ( ||r `
ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) } )
2423mptru 1362 . 2  |-  ( ||r ` ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
2513, 14, 243eqtr4i 2208 1  |-  ||  =  ( ||r `
ring )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   T. wtru 1354    e. wcel 2148   E.wrex 2456   {copab 4065   ` cfv 5218  (class class class)co 5877    x. cmul 7818   ZZcz 9255    || cdvds 11796   Basecbs 12464   .rcmulr 12539  SRingcsrg 13151   Ringcrg 13184   ||rcdsr 13260  ℤringczring 13565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-tp 3602  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-dec 9387  df-uz 9531  df-fz 10011  df-cj 10853  df-dvds 11797  df-struct 12466  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-starv 12553  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-subg 13035  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-cring 13187  df-dvdsr 13263  df-subrg 13345  df-icnfld 13541  df-zring 13566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator