ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrzring Unicode version

Theorem dvdsrzring 14336
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
dvdsrzring  |-  ||  =  ( ||r `
ring )

Proof of Theorem dvdsrzring
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
21anim1i 340 . . . 4  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  ->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
3 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  x  e.  ZZ )
4 zmulcl 9425 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
54ancoms 268 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
6 eleq1 2267 . . . . . . . 8  |-  ( ( z  x.  x )  =  y  ->  (
( z  x.  x
)  e.  ZZ  <->  y  e.  ZZ ) )
75, 6syl5ibcom 155 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( z  x.  x )  =  y  ->  y  e.  ZZ ) )
87rexlimdva 2622 . . . . . 6  |-  ( x  e.  ZZ  ->  ( E. z  e.  ZZ  ( z  x.  x
)  =  y  -> 
y  e.  ZZ ) )
98imp 124 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
y  e.  ZZ )
10 simpr 110 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  E. z  e.  ZZ  ( z  x.  x
)  =  y )
113, 9, 10jca31 309 . . . 4  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) )
122, 11impbii 126 . . 3  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  <->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
1312opabbii 4110 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
14 df-dvds 12070 . 2  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
15 zringbas 14329 . . . . 5  |-  ZZ  =  ( Base ` ring )
1615a1i 9 . . . 4  |-  ( T. 
->  ZZ  =  ( Base ` ring ) )
17 eqidd 2205 . . . 4  |-  ( T. 
->  ( ||r `
ring )  =  ( ||r ` ring ) )
18 zringring 14326 . . . . 5  |-ring  e.  Ring
19 ringsrg 13780 . . . . 5  |-  (ring  e.  Ring  ->ring  e. SRing )
2018, 19mp1i 10 . . . 4  |-  ( T. 
->ring  e. SRing
)
21 zringmulr 14332 . . . . 5  |-  x.  =  ( .r ` ring )
2221a1i 9 . . . 4  |-  ( T. 
->  x.  =  ( .r
` ring
) )
2316, 17, 20, 22dvdsrvald 13826 . . 3  |-  ( T. 
->  ( ||r `
ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) } )
2423mptru 1381 . 2  |-  ( ||r ` ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
2513, 14, 243eqtr4i 2235 1  |-  ||  =  ( ||r `
ring )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372   T. wtru 1373    e. wcel 2175   E.wrex 2484   {copab 4103   ` cfv 5270  (class class class)co 5943    x. cmul 7929   ZZcz 9371    || cdvds 12069   Basecbs 12803   .rcmulr 12881  SRingcsrg 13696   Ringcrg 13729   ||rcdsr 13819  ℤringczring 14323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-addf 8046  ax-mulf 8047
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-z 9372  df-dec 9504  df-uz 9648  df-rp 9775  df-fz 10130  df-cj 11124  df-abs 11281  df-dvds 12070  df-struct 12805  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mulr 12894  df-starv 12895  df-tset 12899  df-ple 12900  df-ds 12902  df-unif 12903  df-0g 13061  df-topgen 13063  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-subg 13477  df-cmn 13593  df-abl 13594  df-mgp 13654  df-ur 13693  df-srg 13697  df-ring 13731  df-cring 13732  df-dvdsr 13822  df-subrg 13952  df-bl 14279  df-mopn 14280  df-fg 14282  df-metu 14283  df-cnfld 14290  df-zring 14324
This theorem is referenced by:  zndvds  14382
  Copyright terms: Public domain W3C validator