ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidinv2 Unicode version

Theorem grpidinv2 13465
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidinv2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, A

Proof of Theorem grpidinv2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 grplrinv.b . . 3  |-  B  =  ( Base `  G
)
2 grplrinv.p . . 3  |-  .+  =  ( +g  `  G )
3 grplrinv.i . . 3  |-  .0.  =  ( 0g `  G )
41, 2, 3grplid 13438 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  (  .0.  .+  A
)  =  A )
51, 2, 3grprid 13439 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( A  .+  .0.  )  =  A )
61, 2, 3grplrinv 13464 . . 3  |-  ( G  e.  Grp  ->  A. z  e.  B  E. y  e.  B  ( (
y  .+  z )  =  .0.  /\  ( z 
.+  y )  =  .0.  ) )
7 oveq2 5965 . . . . . . 7  |-  ( z  =  A  ->  (
y  .+  z )  =  ( y  .+  A ) )
87eqeq1d 2215 . . . . . 6  |-  ( z  =  A  ->  (
( y  .+  z
)  =  .0.  <->  ( y  .+  A )  =  .0.  ) )
9 oveq1 5964 . . . . . . 7  |-  ( z  =  A  ->  (
z  .+  y )  =  ( A  .+  y ) )
109eqeq1d 2215 . . . . . 6  |-  ( z  =  A  ->  (
( z  .+  y
)  =  .0.  <->  ( A  .+  y )  =  .0.  ) )
118, 10anbi12d 473 . . . . 5  |-  ( z  =  A  ->  (
( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  ( ( y 
.+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
1211rexbidv 2508 . . . 4  |-  ( z  =  A  ->  ( E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) ) )
1312rspcv 2877 . . 3  |-  ( A  e.  B  ->  ( A. z  e.  B  E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  ->  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
146, 13mpan9 281 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) )
154, 5, 14jca31 309 1  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Grpcgrp 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411
This theorem is referenced by:  grpidinv  13466
  Copyright terms: Public domain W3C validator