ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidinv2 Unicode version

Theorem grpidinv2 13190
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidinv2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, A

Proof of Theorem grpidinv2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 grplrinv.b . . 3  |-  B  =  ( Base `  G
)
2 grplrinv.p . . 3  |-  .+  =  ( +g  `  G )
3 grplrinv.i . . 3  |-  .0.  =  ( 0g `  G )
41, 2, 3grplid 13163 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  (  .0.  .+  A
)  =  A )
51, 2, 3grprid 13164 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( A  .+  .0.  )  =  A )
61, 2, 3grplrinv 13189 . . 3  |-  ( G  e.  Grp  ->  A. z  e.  B  E. y  e.  B  ( (
y  .+  z )  =  .0.  /\  ( z 
.+  y )  =  .0.  ) )
7 oveq2 5930 . . . . . . 7  |-  ( z  =  A  ->  (
y  .+  z )  =  ( y  .+  A ) )
87eqeq1d 2205 . . . . . 6  |-  ( z  =  A  ->  (
( y  .+  z
)  =  .0.  <->  ( y  .+  A )  =  .0.  ) )
9 oveq1 5929 . . . . . . 7  |-  ( z  =  A  ->  (
z  .+  y )  =  ( A  .+  y ) )
109eqeq1d 2205 . . . . . 6  |-  ( z  =  A  ->  (
( z  .+  y
)  =  .0.  <->  ( A  .+  y )  =  .0.  ) )
118, 10anbi12d 473 . . . . 5  |-  ( z  =  A  ->  (
( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  ( ( y 
.+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
1211rexbidv 2498 . . . 4  |-  ( z  =  A  ->  ( E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) ) )
1312rspcv 2864 . . 3  |-  ( A  e.  B  ->  ( A. z  e.  B  E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  ->  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
146, 13mpan9 281 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) )
154, 5, 14jca31 309 1  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136
This theorem is referenced by:  grpidinv  13191
  Copyright terms: Public domain W3C validator