ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidinv2 Unicode version

Theorem grpidinv2 12758
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidinv2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, A

Proof of Theorem grpidinv2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 grplrinv.b . . 3  |-  B  =  ( Base `  G
)
2 grplrinv.p . . 3  |-  .+  =  ( +g  `  G )
3 grplrinv.i . . 3  |-  .0.  =  ( 0g `  G )
41, 2, 3grplid 12736 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  (  .0.  .+  A
)  =  A )
51, 2, 3grprid 12737 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( A  .+  .0.  )  =  A )
61, 2, 3grplrinv 12757 . . 3  |-  ( G  e.  Grp  ->  A. z  e.  B  E. y  e.  B  ( (
y  .+  z )  =  .0.  /\  ( z 
.+  y )  =  .0.  ) )
7 oveq2 5861 . . . . . . 7  |-  ( z  =  A  ->  (
y  .+  z )  =  ( y  .+  A ) )
87eqeq1d 2179 . . . . . 6  |-  ( z  =  A  ->  (
( y  .+  z
)  =  .0.  <->  ( y  .+  A )  =  .0.  ) )
9 oveq1 5860 . . . . . . 7  |-  ( z  =  A  ->  (
z  .+  y )  =  ( A  .+  y ) )
109eqeq1d 2179 . . . . . 6  |-  ( z  =  A  ->  (
( z  .+  y
)  =  .0.  <->  ( A  .+  y )  =  .0.  ) )
118, 10anbi12d 470 . . . . 5  |-  ( z  =  A  ->  (
( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  ( ( y 
.+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
1211rexbidv 2471 . . . 4  |-  ( z  =  A  ->  ( E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) ) )
1312rspcv 2830 . . 3  |-  ( A  e.  B  ->  ( A. z  e.  B  E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  ->  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
146, 13mpan9 279 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) )
154, 5, 14jca31 307 1  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596   Grpcgrp 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-0g 12598  df-mgm 12610  df-sgrp 12643  df-mnd 12653  df-grp 12711  df-minusg 12712
This theorem is referenced by:  grpidinv  12759
  Copyright terms: Public domain W3C validator