ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidinv2 Unicode version

Theorem grpidinv2 12933
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b  |-  B  =  ( Base `  G
)
grplrinv.p  |-  .+  =  ( +g  `  G )
grplrinv.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidinv2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, A

Proof of Theorem grpidinv2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 grplrinv.b . . 3  |-  B  =  ( Base `  G
)
2 grplrinv.p . . 3  |-  .+  =  ( +g  `  G )
3 grplrinv.i . . 3  |-  .0.  =  ( 0g `  G )
41, 2, 3grplid 12911 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  (  .0.  .+  A
)  =  A )
51, 2, 3grprid 12912 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( A  .+  .0.  )  =  A )
61, 2, 3grplrinv 12932 . . 3  |-  ( G  e.  Grp  ->  A. z  e.  B  E. y  e.  B  ( (
y  .+  z )  =  .0.  /\  ( z 
.+  y )  =  .0.  ) )
7 oveq2 5885 . . . . . . 7  |-  ( z  =  A  ->  (
y  .+  z )  =  ( y  .+  A ) )
87eqeq1d 2186 . . . . . 6  |-  ( z  =  A  ->  (
( y  .+  z
)  =  .0.  <->  ( y  .+  A )  =  .0.  ) )
9 oveq1 5884 . . . . . . 7  |-  ( z  =  A  ->  (
z  .+  y )  =  ( A  .+  y ) )
109eqeq1d 2186 . . . . . 6  |-  ( z  =  A  ->  (
( z  .+  y
)  =  .0.  <->  ( A  .+  y )  =  .0.  ) )
118, 10anbi12d 473 . . . . 5  |-  ( z  =  A  ->  (
( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  ( ( y 
.+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
1211rexbidv 2478 . . . 4  |-  ( z  =  A  ->  ( E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  <->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) ) )
1312rspcv 2839 . . 3  |-  ( A  e.  B  ->  ( A. z  e.  B  E. y  e.  B  ( ( y  .+  z )  =  .0. 
/\  ( z  .+  y )  =  .0.  )  ->  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
146, 13mpan9 281 . 2  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  E. y  e.  B  ( ( y  .+  A )  =  .0. 
/\  ( A  .+  y )  =  .0.  ) )
154, 5, 14jca31 309 1  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( ( (  .0.  .+  A )  =  A  /\  ( A  .+  .0.  )  =  A
)  /\  E. y  e.  B  ( (
y  .+  A )  =  .0.  /\  ( A 
.+  y )  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710   Grpcgrp 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886
This theorem is referenced by:  grpidinv  12934
  Copyright terms: Public domain W3C validator